Section I: Functions and Their Graphs

Unit 3: The Algebra of Functions

We can use the four basic arithmetic operations (addition, subtraction, multiplication, and division) to create new functions from old ones.

DEFINITION: If \(f \) and \(g \) are functions and \(x \) represents a value in both of their domains, then we can define the following four functions:

- **Sum-of-Functions:** \((f + g)(x) = f(x) + g(x)\)
- **Difference-of-Functions:** \((f - g)(x) = f(x) - g(x)\)
- **Product-of-Functions:** \((f \cdot g)(x) = f(x) \cdot g(x)\)
- **Quotient-of-Functions:** \(\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}, \quad g(x) \neq 0\)

Here it is important to note that \(g(x) \neq 0 \) since this would cause division by zero, and division by zero is undefined.

EXAMPLE: Suppose that the function \(s = f(t) \) represents the total number of female students enrolled at PCC \(t \) years after 1990 and that \(s = m(t) \) represents the total number of male students enrolled at PCC \(t \) years after 2000. Write an expression that represents the total number of students enrolled at PCC \(t \) years after 2000.

SOLUTION: \(s = (f + m)(t) \) represents the total number of students enrolled at PCC \(t \) years after 2000.
EXAMPLE: Let \(h(x) = 5 - 7x \) and \(k(x) = \frac{10}{1 + x^2} \).

a. Find and simplify the rule for \((h + k)(x)\).

b. Find and simplify the rule for \((h \cdot k)(x)\).

c. Evaluate \((h + k)(2)\).

d. Evaluate \(\left(\frac{h}{k}\right)(1)\).

e. Evaluate \((k - h)(-3)\).

SOLUTIONS:

a. \((h + k)(x) = h(x) + k(x)\)

\[
= (5 - 7x) + \left(\frac{10}{1 + x^2}\right)
\]

\[
= (5 - 7x) \cdot \frac{1 + x^2}{1 + x^2} + \frac{10}{1 + x^2}
\]

\[
= \frac{(5 - 7x)(1 + x^2)}{1 + x^2} + \frac{10}{1 + x^2}
\]

\[
= \frac{(5 - 7x)(1 + x^2) + 10}{1 + x^2}
\]

\[
= -7x^3 + 5x^2 - 7x + 15
\]

\[
= \frac{1 + x^2}{1 + x^2}
\]

b. \((h \cdot k)(x) = (5 - 7x) \cdot \left(\frac{10}{1 + x^2}\right)\)

\[
= \frac{10(5 - 7x)}{1 + x^2}
\]

\[
= \frac{50 - 70x}{1 + x^2}
\]
c. We can do this one two ways. First, we’ll use the formula we found in a. Since

\[
(h+k)(x) = \frac{-7x^3 + 5x^2 - 7x + 15}{1 + x^2}
\]

we see that

\[
(h+k)(2) = \frac{-7(2)^3 + 5(2)^2 - 7(2) + 15}{1 + (2)^2}
\]

\[
= \frac{-56 + 20 - 14 + 15}{1 + 4}
\]

\[
= \frac{-35}{5}
\]

\[
= -7
\]

Alternatively, we can calculate \(h(2) \) and \(k(2) \) separately, and then add the results:

\[
(h + k)(2) = h(2) + k(2)
\]

\[
= (5 - 7(2)) + \left(\frac{10}{1 + (2)^2} \right)
\]

\[
= -9 + \frac{10}{5}
\]

\[
= -9 + 2
\]

\[
= -7
\]

d. As with c, we can do this two ways. Since we haven't yet found a formula for \(\left(\frac{h}{k} \right)(x) \), we’ll just calculate \(h(1) \) and \(k(1) \), and then divide the results.

\[
\left(\frac{h}{k} \right)(1) = \frac{h(1)}{k(1)}
\]

\[
= \frac{5 - 7(1)}{\left(\frac{10}{1 + (1)^2} \right)}
\]

\[
= \frac{-2}{5}
\]

\[
= -\frac{2}{5}
\]

\[
\begin{align*}
e. \quad (k - h)(-3) &= k(-3) - h(-3) \\
&= \left(\frac{10}{1 + (-3)^2} \right) - (5 - 7(-3)) \\
&= \left(\frac{10}{1 + 9} \right) - (5 + 21) \\
&= 1 - (26) \\
&= -25
\end{align*}
\]

EXAMPLE: Given the graphs of \(y = f(x) \) and \(y = g(x) \) in Figures 1 and 2, respectively, graph \(y = (f + g)(x) \) in Figure 3.

![Figure 1: Graph of \(y = f(x) \).](image1)

![Figure 2: Graph of \(y = g(x) \).](image2)

SOLUTION:

To graph \(y = (f + g)(x) \), choose an input value and add the corresponding output values. For instance, \(f(4) = 4 \) and \(g(4) = 1 \), so \((f + g)(4) = 5 \), while \((f + g)(-6) = -2 \) since \(f(-6) = -1 \) and \(g(-6) = -1 \).

![Figure 3: Graph of \(y = (f + g)(x) \).](image3)
Try this one yourself and check your answer.

If \(f(x) = 2x - 1 \) and \(g(x) = -x + 3 \), find

\[
\begin{align*}
\text{a. } & (f + g)(x) \\
\text{b. } & (f - g)(x) \\
\text{c. } & (f \cdot g)(x) \\
\text{d. } & \left(\frac{f}{g}\right)(x)
\end{align*}
\]

SOLUTIONS:

\[
\begin{align*}
\text{a. } & \text{ Click here for solution} \\
\text{b. } & \text{ Click here for solution} \\
\text{c. } & \text{ Click here for solution} \\
\text{d. } & \left(\frac{f}{g}\right)(x) = \frac{2x - 1}{-x + 3} \text{ for } x \neq 3 \quad \text{(it is important to note that } x \neq 3 \text{ since this would cause division by zero, and division by zero is undefined)}
\end{align*}
\]

Try this one yourself and check your answer.

Fill in the missing parts of the table below.

<table>
<thead>
<tr>
<th>(x)</th>
<th>(f(x))</th>
<th>(g(x))</th>
<th>((f + g)(x))</th>
<th>((f - g)(x))</th>
<th>((f \cdot g)(x))</th>
<th>((f / g)(x))</th>
<th>((f(x))^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>–2</td>
<td>6</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>–1</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>4</td>
<td>–9</td>
<td></td>
<td></td>
<td></td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>–7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[\text{CLICK HERE FOR SOLUTION}\]