§4.2 Maximum and Minimum Values (MTH_251 Review)

Derivatives

Let $f(x)$ be a continuous function on a specified interval.

Let $f' = df/dx =$ derivative of f:
- If $f' > 0 \Rightarrow f$ is increasing
- If $f' < 0 \Rightarrow f$ is decreasing
- If $f' = 0 \Rightarrow f$ is stationary on the specified interval.

Let $f'' = d^2f/dx^2 =$ derivative of f':
- If $f'' > 0 \Rightarrow f'$ is increasing
- If $f'' < 0 \Rightarrow f'$ is decreasing
- If $f'' = 0 \Rightarrow f'$ is stationary on the specified interval.
Let $f(x)$ be a continuous function on a specified interval.

Let $f' = df/dx = \text{derivative of } f$:
- If $f' > 0 \Rightarrow f$ is increasing
- If $f' < 0 \Rightarrow f$ is decreasing
- If $f' = 0 \Rightarrow f$ is stationary on the specified interval.

Let $f'' = d^2f/dx^2 = \text{derivative of } f'$:
- If $f'' > 0 \Rightarrow f'$ is increasing
- If $f'' < 0 \Rightarrow f'$ is decreasing
- If $f'' = 0 \Rightarrow f'$ is stationary on the specified interval.
§4.2 Maximum and Minimum Values (MTH_251 Review)

More On Derivatives

- If $f'' > 0$ on an interval $\Rightarrow f''$ is increasing over that interval \Rightarrow graph of f is concave up on that interval
- If $f'' < 0$ on an interval $\Rightarrow f'$ is decreasing over that interval \Rightarrow graph of f is concave down on that interval
§4.2 Maximum and Minimum Values (MTH_251 Review)

Absolute (Global) Extrema

1. Definition Let \(c \) be a number in the domain \(D \) of the function \(f \). Then, \(f(c) \) is the
 • absolute maximum value of \(f \) if \(f(c) \geq f(x) \ \forall x \in D \).
 • absolute minimum value of \(f \) if \(f(c) \leq f(x) \ \forall x \in D \).
1. **Definition** Let \(c \) be a number in the domain \(D \) of the function \(f \). Then, \(f(c) \) is the
 - absolute maximum value of \(f \) if \(f(c) \geq f(x) \) \(\forall x \in D \).
 - absolute minimum value of \(f \) if \(f(c) \leq f(x) \) \(\forall x \in D \).

2. **Definition** The number \(f(c) \) is a
 2. local maximum value of \(f \) if \(f(c) \geq f(x) \) when \(x \) is near \(c \).
 3. local minimum value of \(f \) is \(f(c) \leq f(x) \) when \(x \) is near \(c \).
Identifying & Classifying Extrema

Given the graph of $f(x)$, state whether $f(x)$ has an absolute max/min, a local max/min or neither a max nor min at $x_1, x_2, etc.$

<table>
<thead>
<tr>
<th>Point</th>
<th>Abs Max</th>
<th>Abs Min</th>
<th>Local Max</th>
<th>Local Min</th>
<th>No Extrema</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x_2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x_3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x_4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x_5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3. **The Extreme Value Theorem** If \(f \) is a continuous function on a closed interval \([a, b]\), then \(f \) attains an absolute maximum value \(f(c) \) and an absolute minimum \(f(d) \) at some numbers \(c \) and \(d \) in \([a, b]\).

Corollary If \(f \) is NOT a continuous function on a closed interval \([a, b]\), then \(f \) need not attain an absolute extrema on \([a, b]\).
Fermat's Theorem

4. **Fermat's Theorem** If f has a local extremum at c, and if $f'(c)$ exists, then $f''(c) = 0$.

N.B.: Fermat's Theorem does not state that $f'(c) = 0$ means that $f(c)$ is an extremum.

e.g., If $f(x) = x^3$, $f'(0) = 0$. However, $f(x)$ does NOT have an extremum at $x = 0$.
§4.2 Maximum and Minimum Values (MTH_251 Review)

Critical Numbers

5. **Definition** A critical number of a function f is a number c in the domain of f such that either $f'(c) = 0$ or $f''(c)$ does not exist.

6. **Fermat's Theorem Restated:** If f has a local extremum at c, then c is a critical number of f.

\[f(x) = (x - 1)^3 \]
\[f'(x) = 3(x - 1)^2 \]

$f'(1) = 0$, hence $x = 1$ is a critical number. However $f(1)$ is NOT an extremum.

\[f(x) = |x - 1| \]
\[f'(x) = \begin{cases} -1, & x < 1 \\ 1, & x > 1 \end{cases} \]
The Closed Interval Method – Absolute Extrema On a Closed Interval

The Closed Interval Method: To find absolute extrema values of a continuous function f on a closed interval $[a,b]$.

1. Find the values of f at the critical numbers of f in (a,b).
2. Find the values of f at the endpoints of the interval.
3. The largest of the values from Steps 1 and 2 is the absolute maximum and the smallest of the values from Steps 1 and 2 is the absolute minimum.