For problems 11-18: Plot each the complex number in the complex plane *(i.e., draw a BIG dot to locate the complex number z)* and write the complex number in polar form: \(z = r e^{i\theta} \) with \(\theta \) in radians AND in trigonometric form: \(z = r (\cos(\theta) + i \sin(\theta)) \) with \(\theta \) in degrees.

11. \(z = 1 + i \)

12. \(z = -1 + i \)
13. \(z = \sqrt{3} - i \)

14. \(z = 1 - i\sqrt{3} \)

15. \(z = -i3 \)
16. \(z = -3 \)

17. \(z = 4 - i4 \)

18. \(z = 9\sqrt{3} + i9 \)
39. Given \(z = 2 + i2 \) and \(w = \sqrt{3} - i \) find the product \(z \cdot w \) and ratio \(\frac{z}{w} \). Report your results in polar form, \(z = r e^{i\theta} \) with \(\theta \) in radians.

40. Given \(z = 1 - i \) and \(w = 1 - i\sqrt{3} \) find the product \(z \cdot w \) and ratio \(\frac{z}{w} \). Report your results in polar form, \(z = r e^{i\theta} \) with \(\theta \) in radians.

53°. Find all the complex roots of \(\sqrt[3]{1 + i} \). Report your results in polar form, \(z = r e^{i\theta} \) with \(\theta \) in radians AND in trigonometric form: \(z = r (\cos(\theta) + i \sin(\theta)) \) with \(\theta \) in degrees.