MTH 251 Lab 4 Write-up Example

Activity 3.z

I decided to take out a five year loan to buy a car. \(P = f(r) \) is the payment I will have to make (in dollars/month) if the annual interest rate is \(r \).

For example, \(f(0.10) = 250 \) means that if the annual interest rate on the loan is 10\%, then the loan payment will be 250 $/month.

\[f'(230) = 0.0875 \] means that if I want the payment to be only 230 $/month, then I need the annual interest rate to be 8.75\%.

The units on \(f'(0.10) = 15.7 \) are \(\frac{\text{$/month}}{\text{percentage point}} \). The meaning of this derivative value is that at an annual interest rate of 10\%, the payment is increasing at a rate of 15.7 $/month per percentage point. So if the payment is 250 $/month when the annual interest rate is 10\%, then the payment is about 265.70 $/month if the annual interest rate is 11\%. The payment at an annual interest rate of 11\% is only an estimate because the rate of change in the function \(f(r) \) is not constant - i.e. \(f(r) \) is not a linear function.

Activity 2.x

Figure 1 shows a plot of the function \(f(x) = 2x^3 + 3x^2 - 36x + 4 \).

At any given value of \(x \), the value of \(f'(x) \) is the slope of the tangent line to \(f(x) \) at that value of \(x \). Clearly the tangent line to \(f(x) \) is horizontal when \(x = 3 \) and when \(x = 2 \), so \(f'(x) = 0 \) at \(x = 3 \) and \(x = 2 \). The tangent line to \(f(x) \) has negative slope for \(3 < x < 2 \) and the tangent line to \(f(x) \) has positive slope for \(x < 3 \) and for \(x > 2 \); consequently \(f'(x) < 0 \) for \(3 < x < 2 \) and \(f'(x) > 0 \) for \(x < 3 \) and for \(x > 2 \).

(Continued on the next page 😊)
The formula for the function $f'(x)$ is:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{2(x+h)^3 + 3(x+h)^2 - 36(x+h) + 4(2x^3 + 3x^2 - 36x + 4)}{h}$$

$$= \lim_{h \to 0} \frac{2(x^3 + 3x^2 h + 3xh^2 + h^3) + 3(x^2 + 2xh + h^2) - 36(x+h) + 4(2x^3 + 3x^2 + 36x - 4)}{h}$$

$$= \lim_{h \to 0} \frac{2x^3 + 6x^2 h + 6xh^2 + 2h^3 + 3x^2 + 6xh + 3h^2 - 36x + 36h + 4(2x^3 + 3x^2 + 36x - 4)}{h}$$

$$= \lim_{h \to 0} \frac{6x^2 h + 6xh^2 + 2h^3 + 6xh + 3h^2 - 36h}{h}$$

$$= \lim_{h \to 0} \left(6x^2 + 6x + 2h^2 + 6x + 3h^2 - 36\right)$$

$$= 6x^2 + 6x - 36$$

Figure 2 shows that $f'(x) = 6x^2 + 6x - 36$ is indeed positive when $f(x)$ is increasing (i.e. when $x < -3$ and when $x > 2$) and $f'(x) = 6x^2 + 6x - 36$ is indeed negative when $f(x)$ is decreasing (i.e. when $3 < x < 2$). 😊

Figure 2: $f(x) = 2x^3 + 3x^2 - 36x + 4$ is the thin curve $f'(x) = 6x^2 + 6x - 36$ is the thick curve