3) \[\sum \frac{(-1)^n}{\sqrt{n+1}} \text{ is Algebraic.} \]

Absolute Convergence

\[\sum \frac{1}{\sqrt{n+1}} \text{ diverges by comparison test with } b_n = \frac{1}{\sqrt{n}} \]

AST

\[b_n = \frac{1}{\sqrt{n+1}} \]

(i) \(\sqrt{n+1} > 0 \) and increasing \(\Rightarrow \frac{1}{\sqrt{n+1}} \) is decreasing

or

\[f'(n) < 0 \]

or

\[\frac{1}{\sqrt{n+2}} < \frac{1}{\sqrt{n+1}} \]

\[\frac{\sqrt{n+1}}{\sqrt{n+2}} \leq 1 \]

\[n+1 \leq n+2 \]

\[1 \leq 2 \text{ True} \]

(ii) \(\lim_{n \to \infty} \frac{1}{\sqrt{n+1}} = 0 \) Form \(\frac{1}{\infty} \)

Converges by the AST