Scientific Notation:

Express the following numbers in scientific notation:

a) 543  
   Ans. $5.43 \times 10^2$

b) 20,000,000  
   Ans. $2.0 \times 10^7$

c) 12,000.0  
   Ans. $1.20000 \times 10^4$

d) 0.0000230  
   Ans. $2.30 \times 10^{-5}$

e) 0.0012  
   Ans. $1.2 \times 10^{-3}$

Significant Figures:

Determine the number of significant figures for each of the following measurements:

a) 2.303 meters  
   Ans. 4

b) 5.50 seconds  
   Ans. 3

c) 0.024 liters  
   Ans. 2 (leading zeroes are not significant)

d) 24.3 kilograms  
   Ans. 3

e) 115.20 centimeters  
   Ans. 5

f) 100 miles/hour  
   Ans. 1 (This is a tricky one! As a measurement, the lack of a decimal point indicates that the trailing zeroes are not significant, they are only place holders.)
Significant Figures (Part 2): Doing math with measured quantities

Perform the following and express your answers using the appropriate number of significant figures:

a) 22.5 liters + 0.023 liters = 22.5 liters
b) 110 apples – 25 apples = 85 apples (As counted entities, the apples are absolute)
c) 110 meters – 25 meters = 90 meters or $9. \times 10^1$ meters (As measured quantities, with no decimal points specified, the trailing zero is not significant. Therefore, the final answer is only known to the nearest 10 meters... Sneaky I am :)

d) \(\frac{12.003 \text{ grams}}{\text{mole}} \times 2.5 \text{ moles} = 30. \text{ grams}\)
e) \(50.45 \text{ cm}^2 / 0.02 \text{ cm}^2 = 3. \times 10^3 \text{ cm}\)
f) \(2.5 \text{ moles} \times \frac{6.022 \times 10^{23} \text{ atoms}}{\text{mole}} = 1.5 \times 10^{24} \text{ atoms}\)

Unit Conversion:

Convert the following quantities and express your answers using the appropriate number of significant figures:

Using the textbook as a guide, convert the following quantities:

a) 2.3 kilograms = \(2.3 \times 10^3\) grams
b) 5.50 liters = \(5.50 \times 10^3\) milliliters (mL)
c) 2.4 mL = \(2.4 \times 10^{-3}\) L

d) 24.3 calories = \(102.\) (or \(1.02 \times 10^2\)) joules (1 cal = 4.184 J)
e) 115.2 quarts = \(109.0\) (or \(1.090 \times 10^2\)) liters (1 L = 1.057 qt)
f) 1013. kg/m^3 = \(1.013\) g/mL (1 mL = 1 cm^3)
g) 100.0 mL/hr = \(0.02778\) (or \(2.778 \times 10^{-2}\)) cm^3/s (1 hr = 60 min = 3600 s)
Unit Conversion within the Metric System:

**Mass:** The most common form of hydrogen atom has a mass of $1.67\times10^{-27}$ kg. Express the mass of this hydrogen atom in the following units (use scientific notation):

a) nanograms (ng)
   Ans. $1.67 \times 10^{-15}$ ng

b) micrograms (µg)
   Ans. $1.67 \times 10^{-18}$ µg

c) milligrams (mg)
   Ans. $1.67 \times 10^{-21}$ mg

d) grams (g)
   Ans. $1.67 \times 10^{-24}$ g

**Length:** A single carbon atom has a diameter of approximately 2.0 angstroms. The angstrom unit is related to the meter by the following: $1 \text{ angstrom} = 10^{-10} \text{ m}$. Express the diameter of a carbon atom in the following units (use scientific notation):

a) nanometers (nm)
   Ans. 0.20 (or $2.0 \times 10^{-1}$) nm

b) micrometers (µm)
   Ans. $2.0 \times 10^{-4}$ µm

c) millimeters (mm)
   Ans. $2.0 \times 10^{-7}$ mm

d) kilometers (km)
   Ans. $2.0 \times 10^{-13}$ km

e) How many carbons would you need to stack side-by-side to make a 1.0 inch long carbon atom chain?
   Ans. $1 \text{ in} = 25.4 \text{ mm}$ → # carbon atoms = \[
   \frac{25.4 \text{ mm}}{2.0 \times 10^{-7} \text{ mm/atom}} = 1.3 \times 10^{8} \text{ atoms}
   \]

**Temperature:**

1) Convert the following temperature readings from °F to °C:
   i) $15 \degree \text{F} = -9.4 \degree \text{C}$
   ii) $70.0 \degree \text{F} = 21.1 \degree \text{C}$
   iii) $425 \degree \text{F} = 218. \degree \text{C}$

2) Convert the following temperature readings from °C to °F:
   i) $4. \degree \text{C} = 39. \degree \text{F}$
   ii) $37.0 \degree \text{C} = 98.6 \degree \text{F}$
   iii) $-100. \degree \text{C} = -148. \degree \text{F}$
3) Convert the temperatures in (2) to K
   i) 4. °C = 277. K
   ii) 37. °C = 310. K
   iii) –100. °C = 173. K

Density:
1) Determine the density for the following substances:
   i) 10.0 g of water (at 4 °C) with a volume of 10.0 cm³:  D = 1.00 g/cm³
   ii) 10.0 g of ice with a volume of 10.9 cm³:  D = 0.917 g/cm³
   iii) 10.0 g of aluminum with a volume of 3.7 cm³:  D = 2.70 g/cm³
   iv) 10.0 g of gold with a volume of 0.52 cm³:  D = 19.2 g/cm³

2) Using the density values above, determine the amount of mass (grams) in 30.0 cm³ of the following substances:
   i) Water (at 4 °C):  m = 30.0 g
   ii) Ice:  m = 27.5 g
   iii) Aluminum:  m = 81.0 g
   iv) Gold:  m = 576. g

3) How much space do 50.0 grams of the following substances occupy?
   v) Water (at 4 °C):  V = 50.0 cm³
   vi) Ice:  V = 54.5 cm³
   vii) Aluminum:  V = 18.5 cm³
   viii) Gold:  V = 2.60 cm³

A Practical Application:
An ailing patient in a hospital requires a certain drug to be administered at a rate of 40.0 cm³ per hour. The intravenous (IV) drug delivery system that will deliver the medication controls the drug delivery by measuring drip rate. Using this system, 30 drops are equal to 1.0 cm³ of medication.

a) What drip rate (drops per hour) is required to maintain a drug delivery of 40.0 cm³ per hour?
   Ans. 1.2 x 10³ drops/hr

   Note: even though you are attempting to administer the medication at a rate of 40.0 cm³/hr (3 significant figures), the lack of precision of the drip system itself will only allow a reliable drip rate of 40. cm³/hr (only 2 significant figures).

b) What is the drip rate in drops per second?
   Ans. 0.33 drops/s

c) How many drops would you expect to count in 10.0 seconds?
   Ans. 3 drops (Note: drops are a counting quantity!)