Math 261 Lecture Notes: Section 4.1

Vector Spaces and Subspaces

Definition 1. A vector space is a nonempty set V of objects, called vectors, on which two operations, called addition and scalar multiplication are defined and for which the following ten axioms hold for all \vec{u}, \vec{v} and \vec{w} in V and for all scalars c and d:

(1) The sum of \vec{u} and \vec{v}, denoted $\vec{u} + \vec{v}$ is in V (closure under addition)
(2) $\vec{u} + \vec{v} = \vec{v} + \vec{u}$ (commutativity of addition)
(3) $(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$ (associativity of addition)
(4) There is a zero vector, $\vec{0}$, in V such that $\vec{v} + \vec{0} = \vec{v}$ (existence of an additive identity)
(5) For each \vec{u} in V, there is a vector $-\vec{u}$ such that $\vec{u} + (-\vec{u}) = \vec{0}$ (existence of an additive inverse)
(6) The scalar multiple of \vec{u} by c, denoted by $c\vec{u}$, is in V (closure under scalar multiplication)
(7) $c(\vec{u} + \vec{v}) = c\vec{u} + c\vec{v}$
(8) $(c + d)\vec{u} = c\vec{u} + c\vec{v}$
(9) $c(d\vec{u}) = cd\vec{u}$
(10) $1\vec{u} = \vec{u}$

We have already seen many examples of vector spaces:

- The set of vectors in \mathbb{R}^n under the standard operations of vector addition and scalar multiplication is a vector space over the set of real numbers.

- The set of all real $m \times n$ matrices under the standard operations of vector addition and scalar multiplication is a vector space over the set of all real numbers.
Definition 2. A set is a collection of objects. For sets A and B, we say B is a subset of A if every element of B is contained in A. Below are some common sets of numbers you have seen:

<table>
<thead>
<tr>
<th>Set</th>
<th>Set Notation</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complex Numbers</td>
<td>${a + bi \mid a, b \in \mathbb{R}}$</td>
<td>\mathbb{C}</td>
</tr>
<tr>
<td>Real Numbers</td>
<td>${a \in \mathbb{R}}$</td>
<td>\mathbb{R}</td>
</tr>
<tr>
<td>Irrational Numbers</td>
<td>${a \in \mathbb{R} \mid a \notin \mathbb{Q}}$</td>
<td>\mathbb{Q}^c</td>
</tr>
<tr>
<td>Rational Numbers</td>
<td>${\frac{a}{b} \mid a, b \in \mathbb{Z}, b \neq 0}$</td>
<td>\mathbb{Q}</td>
</tr>
<tr>
<td>Integers</td>
<td>${\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots}$</td>
<td>\mathbb{Z}</td>
</tr>
<tr>
<td>Whole Numbers</td>
<td>${0, 1, 2, 3, \ldots}$</td>
<td>$\mathbb{N} \cup {0}$</td>
</tr>
<tr>
<td>Natural Numbers</td>
<td>${1, 2, 3, \ldots}$</td>
<td>\mathbb{N}</td>
</tr>
<tr>
<td>Binary Numbers</td>
<td>${0, 1}$</td>
<td>\mathbb{Z}_2</td>
</tr>
</tbody>
</table>

Examples of Subsets.

- The real numbers is a subset of the set of complex numbers. This is true because every real number can be written as $a + (0)i$.

- The set of integers is a subset of the real numbers. The set of integers is a subset of the rational numbers.

- The set $A = \{1, 3, 5\}$ is a subset of the set $B = \{1, 2, 4, 5\}$.

Figure 1: Diagram of Subsets of Numbers
Showing Closure Under Addition:

Consider the subset

\[S = \left\{ \begin{bmatrix} x \\ y \\ 0 \end{bmatrix} \mid x, y \in \mathbb{R} \right\} \]

of

\[V = \mathbb{R}^3 = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} \mid x, y, z \in \mathbb{R} \right\} . \]

Define addition and scalar multiplication in the standard way for vectors.

The set \(S \) is \textit{closed under addition} because when two arbitrary vectors from this set are added, the resultant vector is an element of \(S \). To show this, we write the following:

Let \(\vec{u} = \begin{bmatrix} u_1 \\ u_2 \\ 0 \end{bmatrix} \) and let \(\vec{v} = \begin{bmatrix} v_1 \\ v_2 \\ 0 \end{bmatrix} \) be vectors in \(S \). Then

\[\vec{u} + \vec{v} = \begin{bmatrix} u_1 \\ u_2 \\ 0 \end{bmatrix} + \begin{bmatrix} v_1 \\ v_2 \\ 0 \end{bmatrix} = \begin{bmatrix} u_1 + v_1 \\ u_2 + v_2 \\ 0 \end{bmatrix} , \]

which is an element of \(S \). Therefore \(S \) is closed under addition.

Showing Closure Under Addition Does Not Hold:

Consider the subset

\[S = \left\{ \begin{bmatrix} x \\ 1 \end{bmatrix} \mid x \in \mathbb{R} \right\} \]

of

\[V = \mathbb{R}^2 = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \mid x, y \in \mathbb{R} \right\} . \]

Define addition and scalar multiplication with the standard componentwise operations.

Let \(\vec{u} = \begin{bmatrix} u_1 \\ 1 \end{bmatrix} \) and let \(\vec{v} = \begin{bmatrix} v_1 \\ 1 \end{bmatrix} \) be vectors in \(S \). Then

\[\vec{u} + \vec{v} = \begin{bmatrix} u_1 \\ 1 \end{bmatrix} + \begin{bmatrix} v_1 \\ 1 \end{bmatrix} = \begin{bmatrix} u_1 + v_1 \\ 2 \end{bmatrix} , \]

which is not an element of \(S \). Therefore the \(S \) is not closed under addition.
Example 1. Determine if the previous two sets are closed under scalar multiplication.

Definition 3. A **subspace** of a vector space V is a subset H of V that has the following three properties:

1. The zero vector of V is in H.
2. H is closed under vector addition. (That is, for every \vec{u} and \vec{v} in H, it holds that $\vec{u} + \vec{v}$ is in H.)
3. H is closed under scalar multiplication. (That is, for every \vec{u} in H and every scalar c, it holds that $c\vec{u}$ is in H.)
Example 2. Show that the set $S = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \bigg| y = 2x \right\}$ is a subspace of \mathbb{R}^2 with standard vector addition and scalar multiplication.

Theorem 1. If $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_p$ are in a vector space V, then $\text{Span}\{\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_p\}$ is a subspace of V.
Example 3. Show that the set $V = \left\{ \begin{bmatrix} a & b \\ c & 1 \end{bmatrix} \mid a, b, c \in \mathbb{R} \right\}$ does not form a vector under matrix addition and scalar multiplication.
Example 4. Is \(S \) a subspace of \(\mathbb{R}^3 \) when \(S = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} \mid x, y \in \mathbb{R} \right\} \)?

Example 5. Is \(S \) a subspace of \(\mathbb{R}^2 \) when \(S = \left\{ \begin{bmatrix} s \\ 3s - t \end{bmatrix} \mid s, t \in \mathbb{R} \right\} \)?
The vector space of all polynomials of degree n or less is denoted by P_n with standard addition and scalar multiplication. This set is assumed to contain 0, although this is not technically a “polynomial” by all definitions.

Example 6. Show that the set of polynomials $S = \{ax^2 + c \mid a, c \in \mathbb{R}\}$ is a subspace of P_2.

Example 7. Show that the set of polynomials $S = \{ax^2 + 1 \mid a \in \mathbb{R}\}$ is not a subspace of P_2.