Example 1. Temperature in degrees Fahrenheit, F, can be written as a function of temperature in degrees Celsius, C. This relationship is given by $F = g(C) = \frac{9}{5}C + 32$.

(a) Find and interpret $g(100)$.

(b) Solve and interpret the solution to $g(C) = 32$.

(c) Solve the equation $F = \frac{9}{5}C + 32$ for C.

A function f is said to be one-to-one if for every y-value in the range of f there is exactly one x-value in the domain of f.

A function must be one-to-one in order to have an inverse. The inverse function of f reverses the process of the original function. In other words, the input and output switch roles. The original function is given by $y = f(x)$. The inverse function is given by $x = f^{-1}(y)$. If we want to graph both of these functions in the (x, y)-plane, then we use $y = f^{-1}(x)$. To find the inverse, we switch the variables x and y and solve for y.

The inverse function of f is denoted by f^{-1}. It is important to note that this notation is not denoting a reciprocal. That is, $f^{-1}(x) \neq \frac{1}{f(x)}$.
Example 2. The function f defined by $f(x) = 3x + 2$ is one-to-one. Find its inverse. Then graph $y = f(x)$ and $y = f^{-1}(x)$ in Figure 1. Include the graph of $y = x$ also. To verify that two functions are inverses, show that $f(f^{-1}(x)) = x$ and that $f^{-1}(f(x)) = x$.

The **horizontal line test** is a way of determining if a function is one-to-one. It states that if every horizontal line passes through a graph of a function at most once, then the function is one-to-one. In the same way that the vertical line test verifies if a graph represents a function, the horizontal line test verifies if the graph of a function is one-to-one (and thus invertible).

Example 3. Graph $f(x) = x^2 + 2$ in Figure 2. Then graph $g(x) = x^2 + 2, x \geq 0$ in Figure 3. Is either function invertible? Why or why not? If so, graph the inverse function.
Example 4. The function \(f \) defined by \(f(x) = -\frac{2x}{3x - 4} \) is one-to-one. Find the inverse function. Confirm that the inverse function you found is correct by showing \(f(f^{-1}(x)) = x \) and \(f^{-1}(f(x)) = x \).

State the domain and range of each \(f \) and \(f^{-1} \).

The domain of \(f \) is the range of \(f^{-1} \). Similarly, the range of \(f \) is the domain of \(f^{-1} \).
Example 5. The function \(g \) defined by \(g(x) = x^3 - 8\sqrt[3]{x} + 8 \) is one-to-one. Find the inverse function and confirm that it is the inverse by showing \(g(g^{-1}(x)) = x \) and \(g^{-1}(g(x)) = x \). In Figure 4, use transformations to sketch \(y = g(x) \), \(y = g^{-1}(x) \) and \(y = x \).

![Figure 4](image-url)
Example 6. Use the functions f and g given in Table 1 to determine the following.

<table>
<thead>
<tr>
<th>x</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f(x)$</td>
<td>5</td>
<td>4</td>
<td>2</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>$g(x)$</td>
<td>7</td>
<td>2</td>
<td>0</td>
<td>-2</td>
<td>9</td>
</tr>
</tbody>
</table>

(a) $g^{-1}(-2)$ (b) $f^{-1}(2)$ (c) $f^{-1}(0)$ (d) $f(g^{-1}(0))$

Example 7. Graph the inverse function of f in Figure 5. Then use your sketch to find the values of f^{-1} below.

<table>
<thead>
<tr>
<th>x</th>
<th>-4</th>
<th>-2</th>
<th>2</th>
<th>4</th>
</tr>
</thead>
</table>

(a) $f^{-1}(-4)$ (c) $f^{-1}(0)$ (e) $f^{-1}(4)$

(b) $f^{-1}(-2)$ (d) $f^{-1}(2)$
Example 8. The diameter of a Window-Pane oyster, d (in mm), as a function of its weight, w (in grams) can be modeled by

$$d = f(w) = 25 + 20w^{1/3}$$

Find the inverse function by solving $d = 25 + 20w^{1/3}$ for w. Write this inverse function as $g(d)$.