Definition 1. A rational function is of the form $R(x) = \frac{p(x)}{q(x)}$ where p and q are polynomial functions.

The zeros of a rational function occur where $p(x) = 0$, as the function’s value is zero where the value of the numerator is zero.

A rational function is undefined where $q(x) = 0$, as the function is undefined whenever its denominator is zero.

The long run behavior of R can be determined by the ratio of leading terms of p and q.

Example 1. Determine the long-run behavior of the following functions.

(a) $R(x) = \frac{3}{x^2 - 4}$

$$\frac{3}{x^2} \quad \text{In the long run, } R \text{ "looks like" } \frac{3}{x^2}$$

(b) $R(x) = \frac{3x - 5}{x^2 + x - 6}$

$$\frac{3x}{x^2} = \frac{3}{x} \quad \text{In the long run, } R \text{ "looks like" } \frac{3}{x}$$

(c) $R(x) = \frac{x^2 - 5x - 6}{x^2 + x - 12}$

$$\frac{x^2}{x^2} = 1 \quad \text{In the long run, } R \text{ "looks like" } y = 1$$

(d) $R(x) = \frac{x^2 - 4x + 3}{x - 2}$

$$\frac{x^2}{x} = x \quad \text{In the long run, } R \text{ "looks like" } y = x$$

(e) $R(x) = \frac{3 - x^7}{4x^2 - 1}$

$$\frac{x^2}{4x^2} = -\frac{1}{4} x^5 \quad \text{In the long run, } R \text{ "looks like" } y = -\frac{1}{4} x^5$$

See Example 11
Example 2. Graph the rational function \(R(x) = \frac{x^2 - 4x + 3}{x - 3} \) by completing the following:

- Factor and simplify \(R(x) \). State the domain and any holes.
- State the long-run behavior and any horizontal asymptote. Determine if the function crosses its horizontal asymptote.
- Find the vertical intercept.
- Find any zeros and find any vertical asymptotes. State the behavior of the function around the zeros and vertical asymptotes (preferably by making a table).

\[
R(x) = \frac{x^2 - 4x + 3}{x - 3} = \frac{(x-1)(x-3)}{x-3} = x-1, \ x \neq 3
\]

Domain of \(R \): \((-\infty, 3) \cup (3, \infty)\)

\(\times \) There is a hole at 3
\(\times \) Place an open circle at \((3, 2)\)

\(\times \) Long Run Behavior:
\[
\frac{x^2}{x} = x
\]
"looks like" \(y = x \)
No horizontal asymptote

\(\times \) \(R(0) = -1 \)
\((0, -1)\)
\(\times \) \(\text{zeros: } 1 \), multiplicity 1
Example 3. Graph the rational function $R(x) = \frac{3x - 6}{x^2 + x - 6}$ by completing the following:

- Factor and simplify $R(x)$. State the domain and any holes.

- State the long-run behavior and any horizontal asymptote. Determine if the function crosses its horizontal asymptote.

- Find the vertical intercept.

- Find any zeros and find any vertical asymptotes. State the behavior of the function around the zeros and vertical asymptotes (preferably by making a table).

\[R(x) = \frac{3x - 6}{x^2 + x - 6} \]

\[= \frac{3(x-2)}{(x+3)(x-2)} \]

\[= \frac{3}{x+3}, \quad x \neq 2 \]

Domain of R: \(\{ x \mid x \neq 2, -3 \} \)

There is a hole at \(x = 2 \)

The y-value is \(\frac{3}{3} = 1 \)

Long Run Behavior:

\[\frac{3x}{x^2} = \frac{3}{x} \]

Horizontal Asymptote: \(y = 0 \)

Does R cross its horizantl asymptote?

\[0 = \frac{3x - 6}{x^2 + x - 6} \]

\[0(x^2 + x - 6) = 3x - 6 \]

\[0 = 3x - 6 \]

\[0 = 3x \]

\[x = x \]

It crosses at \(x = 2 \).

There is a hole at \(2 \).
Example 4. Graph the rational function \(R(x) = \frac{x^2 - 5x - 6}{x^2 + x - 12} \) by completing the following:

- Factor and simplify \(R(x) \). State the domain and any holes.
- State the long-run behavior and any horizontal asymptote. Determine if the function crosses its horizontal asymptote.
- Find the vertical intercept.
- Find any zeros and find any vertical asymptotes. State the behavior of the function around the zeros and vertical asymptotes (preferably by making a table).

\[
R(x) = \frac{x^2 - 5x - 6}{x^2 + x - 12} = \frac{(x-6)(x+1)}{(x-3)(x+4)}
\]

Domain: \(\{ x \mid x \neq 3, -4 \} \)

\[\frac{x^2}{x^2} = 1 \]

Horizontal Asymptote: \(y = 1 \)

Does \(R \) cross \(y = 1 \)?

\[
1 = \frac{x^2 - 5x - 6}{x^2 + x - 12}
\]

\[
x^2 + x - 12 = x^2 - 5x - 6
\]

\[
x - 12 = -5x - 6
\]

\[
x = -6
\]

\[
1 = x
\]

Crosses at \(x = 1 \) (y-value is 2)

\[\boxed{\text{Vertical Intercept}} R(0) = \frac{0^2 - 5(0) - 6}{0^2 + 0 - 12} = \frac{1}{2} (0, \frac{1}{2}) \]

\[\boxed{\text{Zeros: } 6, -1} \]

\[\boxed{\text{Vertical Asymptotes: } x = 3, x = -4} \]

\[\boxed{\text{Numerator!}} \]

\[\boxed{\text{Denominator!}} \]

\[
\begin{array}{c|cccccc}
\text{Interval} & (-\infty, -4) & (-4, -1) & (-1, 3) & (3, 6) & (6, \infty) \\
\hline
x & -6 & -2 & 0 & 4 \\
R(x) & R(-6) = \frac{10}{5} & R(-2) = \frac{2}{5} & R(0) = 1 & R(4) = \frac{-5}{4} \\
+/- & + & (above) & - & (below) & + & - \\
\text{Pit point} & (-6, \frac{10}{5}) & (-2, -\frac{4}{5}) & (0, 1) & (4, \frac{-5}{4})
\end{array}
\]

\[\text{Figure 3} \]

Instructor: A.E. Cary
Example 5. Graph the rational function \(R(x) = \frac{8}{x^2 - 4} \) by completing the following:

- Factor and simplify \(R(x) \). State the domain and any holes.
- State the long-run behavior and any horizontal asymptote. Determine if the function crosses its horizontal asymptote.
- Find the vertical intercept.
- Find any zeros and find any vertical asymptotes. State the behavior of the function around the zeros and vertical asymptotes (preferably by making a table).

\[
R(x) = \frac{8}{x^2 - 4} = \frac{8}{(x-2)(x+2)}
\]

Domain of \(R(x) \): \(\{ x \mid x \neq 2, -2 \} \)

No holes!

Long-Run Behavior:

\[
\frac{8}{x^2}
\]

Horizontal Asymptote: \(y = 0 \)

Does it cross?

\[
0 = \frac{8}{x^2 - 4}
\]

\[
0(x^2 - 4) = 8
\]

\[
0 = 8 \quad \text{Lies!}
\]

No solution.

It does not cross.

\[
R(0) = \frac{8}{0^2 - 4} = -2
\]

The vertical intercept is \((0, -2) \)

Zeros: None.

Vertical Asymptotes: \(x = 2, x = -2 \)

(Denominator)

Note: We drew the behavior b/n -2 and 2 based on the fact that the function does not cross \(y = 0 \). You could also evaluate \(R(x) \) at -1 and 1.

\[
\begin{array}{c|c|c|c|c|c|c}
\text{Interval} & (-\infty, -2) & \text{Skipped} & (2, \infty) \\
\hline
x & -4 & & 4 \\
\hline
R(x) & 0(4) = \frac{2}{3} & & R(4) = \frac{2}{3} \\
\hline
+/- & + & & + \\
\hline
\text{Plot points} & (-4, \frac{2}{3}) & & (4, \frac{2}{3}) \\
\end{array}
\]

Figure 4

\[
\text{Graph of } \frac{8}{x^2 - 4}
\]
$$f(x) = 3(x-7)(x+3)^2$$

<table>
<thead>
<tr>
<th>Zero</th>
<th>Multiplicity</th>
<th>Behavior near zero</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>1</td>
<td>straight through</td>
</tr>
<tr>
<td>-3</td>
<td>2</td>
<td>bounce / touch</td>
</tr>
</tbody>
</table>

- Degree: 3
- Max number of turning points: 2

- In the long run, $f(x)$ looks like $3x^3$.

- As $x \to \infty$, $f(x) \to \infty$
- As $x \to -\infty$, $f(x) \to -\infty$

Alternate notation:
- $\lim_{x \to \infty} f(x) = \infty$
- $\lim_{x \to -\infty} f(x) = -\infty$

- **y-intercept:**
 - $f(0) = 3(0-7)(0+3)^2$
 - $= -189$