In this section, we will explore function transformations. We will explore these numerically (in tabular form), algebraically (as formulas), and graphically. When you studied the vertex form of a parabola, you were actually studying function transformations for a specific function—namely, \(f(x) = x^2 \). For example, when graphing \(y = -(x - 6)^2 - 3 \), you know that the graph points downward and that the vertex is \((6, -3)\).

We could also say that the graph is reflected about the \(x\)-axis, shifted right 6 units, and then shifted down 3 units. In this course, we will be able to apply similar transformations to any function—not just parabolas! One such example is shown below.

http://www.esrl.noaa.gov/gmd/ccgg/trends/
Let \(y = f(x) \), where \(x \) is the number of months after January 1, 2011 and \(f(x) \) is the amount of CO\(_2\) in the atmosphere after \(x \) months. We will measure \(f(x) \) in parts per million above 380 and restrict \(x \) to \(-3 \leq x \leq 9\). The data for September 2010 through September 2011 is shown in Figure 2.

Vertical Shifts

Example 1. Complete Table 1 using the function values for \(f \). What happens to the graph in each case? Sketch and label the graph of \(y = f(x) + 4 \) and the graph of \(y = f(x) - 2 \) in Figure 2.

<table>
<thead>
<tr>
<th>(x)</th>
<th>-3</th>
<th>0</th>
<th>3</th>
<th>6</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(x))</td>
<td>7</td>
<td>10</td>
<td>13</td>
<td>11</td>
<td>9</td>
</tr>
<tr>
<td>(f(x) + 4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(f(x) - 2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Summary of Vertical Shifts

The graph of \(y = f(x) + k \) is transformation of the graph of \(y = f(x) \).
- If \(k > 0 \), then the graph of the original function shifts _______ by \(k \) units.
- If \(k < 0 \), then the graph of the original function shifts _______ by \(k \) units.

Horizontal Shifts

Horizontal shifts are not quite as straightforward as vertical shifts. The primary reason is that in order to shift the graph horizontally, we need to add or subtract from \(x \)—before we evaluate the function. The end result is that horizontal transformations work a bit backwards from what you may expect, as we will discover in the example below.

Example 2. Complete Table 2 using the function values for \(f \). What happens to the graph in each case? Sketch and label the graph of \(y = f(x + 3) \) and the graph of \(y = f(x - 6) \) in Figure 3.

<table>
<thead>
<tr>
<th>(x)</th>
<th>-6</th>
<th>-3</th>
<th>0</th>
<th>3</th>
<th>6</th>
<th>9</th>
<th>12</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(x))</td>
<td>und.</td>
<td>7</td>
<td>10</td>
<td>13</td>
<td>11</td>
<td>9</td>
<td>und.</td>
<td>und.</td>
</tr>
<tr>
<td>(f(x + 3))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(f(x - 6))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Summary of Horizontal Shifts

The graph of \(y = f(x + h) \) is transformation of the graph of \(y = f(x) \).

- If \(h > 0 \), then the graph of the original function shifts ________ by \(h \) units.
- If \(h < 0 \), then the graph of the original function shifts ________ by \(h \) units.
Example 3. For each function below, the “original” or “basic” function is $y = |x|$. Use the properties of horizontal and vertical shifts to graph the stated transformations. The full graph and 3 key points are given in each.

(a) Graph $y = |x| - 5$.

(b) Graph $y = |x + 4|$.

(c) Graph $y = |x + 2| - 1$.

(d) Graph $y = |x - 3| - 6$.
Vertical Stretches and Compressions

Example 4. Assume the base temperature setting for the thermostat in a house is 64°F. Let \(g(x) \) be the number of degrees above 64°F \(x \) hours after 6am. Complete Table 3 using the function values for \(g \). What happens to the graph in each case? Sketch and label the graph of \(y = 2g(x) \) in Figure 8 and the graph of \(y = \frac{1}{2}g(x) \) in Figure 9.

<table>
<thead>
<tr>
<th>(x)</th>
<th>-2</th>
<th>0</th>
<th>4</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>(g(x))</td>
<td>-2</td>
<td>6</td>
<td>6</td>
<td>0</td>
<td>-2</td>
</tr>
<tr>
<td>(2g(x))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\frac{1}{2}g(x))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Summary of Vertical Stretches and Compressions
The graph of \(y = Af(x) \) is transformation of the graph of \(y = f(x) \). If

- If \(|A| > 1\), then the graph of the original function ________________ vertically by a factor of \(|A|\).
- If \(0 < |A| < 1\), then the graph of the original function ________________ vertically by a factor of \(|A|\).
Horizontal Stretches and Compressions

Horizontal stretches and compressions, much like horizontal shifts, work in a somewhat counterintuitive way. This again is a result of the fact that we will multiply x by a number before we evaluate the function.

Example 5. The graph of $y = h(x)$ is shown below. Complete Table 4 and then graph $y = h\left(\frac{1}{2}x\right)$ in Figure 10.

<table>
<thead>
<tr>
<th>x</th>
<th>-12</th>
<th>-8</th>
<th>-6</th>
<th>-4</th>
<th>0</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>$h(x)$</td>
<td>und.</td>
<td>und.</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>-4</td>
<td>6</td>
<td>und.</td>
</tr>
<tr>
<td>$h\left(\frac{1}{2}x\right)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 10

![Graph of $y = h(x)$ and $y = h\left(\frac{1}{2}x\right)$]
Example 6. The graph of $y = h(x)$ is shown below. Complete Table 5 and then graph $y = h(4x)$ in Figure 11. An “X” is placed where the function is defined but difficult to evaluate.

Table 5

<table>
<thead>
<tr>
<th>x</th>
<th>-6</th>
<th>-4</th>
<th>-1.5</th>
<th>-1</th>
<th>0</th>
<th>0.5</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>$h(x)$</td>
<td>0</td>
<td>0</td>
<td>X</td>
<td>3</td>
<td>4</td>
<td>X</td>
<td>2</td>
<td>0</td>
<td>-4</td>
<td>6</td>
</tr>
<tr>
<td>$h(4x)$</td>
<td></td>
</tr>
</tbody>
</table>

Summary of Horizontal Stretches and Compressions

The graph of $y = f(Bx)$ is transformation of the graph of $y = f(x)$.

- If $|B| > 1$, then the graph of the original function _________ horizontally by a factor of $\frac{1}{|B|}$.
- If $0 < |B| < 1$, then the graph of the original function _________ horizontally by a factor of $\frac{1}{|B|}$.
Horizontal and Vertical Reflections

Example 7. The graph of \(y = h(x) \) is shown below. Complete Table 6 and then graph \(y = -h(x) \) in Figure 12 and graph \(y = h(-x) \) in Figure 13.

Table 6

<table>
<thead>
<tr>
<th>(x)</th>
<th>-8</th>
<th>-6</th>
<th>-4</th>
<th>-2</th>
<th>0</th>
<th>2</th>
<th>4</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>(h(x))</td>
<td>und.</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>0</td>
<td>-4</td>
<td>6</td>
</tr>
<tr>
<td>(-h(x))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(h(-x))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 12

Figure 13

Summary of Horizontal and Vertical Reflections

- The graph of \(y = -f(x) \) is transformation of the graph of \(y = f(x) \). It reflects the graph of the original function across the ___________ axis.

- The graph of \(y = f(-x) \) is transformation of the graph of \(y = f(x) \). It reflects the graph of the original function across the ___________ axis.
Example 8. For each function below, the “original” or “basic” function is $y = \sqrt{x}$. Use the properties of horizontal and vertical stretches and compressions to graph the stated transformations. The full graph and 4 key points are given in each.

(a) Graph $y = 4\sqrt{x}$.

(b) Graph $y = \sqrt{\frac{1}{3}x}$.

(c) Graph $y = -\sqrt{x}$.

(d) Graph $y = \frac{1}{2}\sqrt{x}$.

(e) Graph $y = \sqrt{2x}$.

(f) Graph $y = \sqrt{-x}$.

Instructor: A.E.Cary
Example 9. The point $(4, 12)$ is on the graph of $y = f(x)$. Determine the point on the graph of...

(a) $y = f(x + 2) - 1$

(b) $y = 5f(x)$

(c) $y = -f(x - 5) + 4$

(d) $y = f \left(\frac{1}{3}x \right)$

(e) $y = f(-x) - 5$

(f) $y = 2f(4(x + 1)) - 3$
Example 10. For the function below, identify the original (or “basic”) function and explain how the graph is a transformation of the graph of the original function. State all steps to this transformation in an appropriate order.

(a) $g(x) = 8\sqrt[3]{-4x}$

(b) $h(x) = -|2x + 6|

(c) $j(x) = \frac{2}{3} (5(x - 1))^3 + 4$
Example 11. Let \(g(x) = -(x - 6)^2 - 3 \).

(a) Identify the original (or “basic”) function and explain how the graph of \(y = g(x) \) is a transformation of the original function. State all steps to this transformation in an appropriate order.

(b) Compare the graph of \(y = g(x) \) to the graph of \(y = x^2 \) after it has been shifted right 6 units, shifted down 3 units and THEN reflected about the \(x \)-axis.
Example 12. Let \(g(x) = \frac{1}{2}(x + 5)^3 + 4 \). Identify the original function and explain how the graph of \(y = g(x) \) is a transformation of the graph of the original function. Then sketch a graph of \(y = g(x) \) in Figure 22.

Example 13. Let \(g(x) = \left| \frac{1}{2}x - 3 \right| - 1 \). Identify the original function and explain how the graph of \(y = g(x) \) is a transformation of the graph of the original function. Then sketch a graph of \(y = g(x) \) in Figure 23.
Example 14. Let \(g(x) = \sqrt{-(x + 3)} + 2 \). Identify the original function and explain how the graph of \(y = g(x) \) is a transformation of the graph of the original function. Then sketch a graph of \(y = g(x) \) in Figure 24.

![Figure 24](image1)

Example 15. Let \(g(x) = -f(2(x + 4)) + 3 \). The original function \(y = f(x) \) is shown in Figure 25. Explain how the graph of \(y = g(x) \) is a transformation of the graph of the original function. Then sketch a graph of \(y = g(x) \) in Figure 25.

![Figure 25](image2)
Group Work. Complete the following for each set of functions below that your group is assigned:

- Identify and graph the basic function used in this transformation. (Example: \(f(x) = x^2 \)). Use your Library of Functions Handout if necessary.
- State the series of transformations and the order in which they occur.
- Graph the transformation.
- Check your work. This can be done by hand by creating a table or with your graphing calculator.

Transformations

Section I: Horizontal and Vertical Shifts

(a) \(g_1(x) = (x - 5)^2 + 1 \)

(b) \(g_2(x) = \sqrt{x + 4} + 2 \)

(c) \(g_3(x) = (x + 1)^3 - 2 \)

(d) \(g_4(x) = \frac{1}{x - 2} + 3 \)

(e) \(g_5(x) = |x + 8| - 6 \)

(f) \(g_6(x) = \sqrt{x - 4} - 2 \)

Section II: Horizontal and Vertical Stretches and Reflections

(a) \(g_1(x) = \sqrt{-2x} \)

(b) \(g_2(x) = -5\sqrt{x} \)

(c) \(g_3(x) = \left(-\frac{1}{2}x\right)^3 \)

(d) \(g_4(x) = -\frac{1}{2}x^3 \)

(e) \(g_5(x) = -3x^2 \)

(f) \(g_6(x) = |5x| \)

Section III: Combined Function Transformations

(a) \(g_1(x) = 2|x| - 3 \)

(b) \(g_2(x) = -(x + 1)^3 - 3 \)

(c) \(g_3(x) = \sqrt{-x} + 4 \)

(d) \(g_4(x) = 3(x - 2)^2 + 5 \)

(e) \(g_5(x) = \frac{2}{x} + 5 \)

(f) \(g_6(x) = 4\sqrt{2(x + 1)} + 3 \)