Section 2.5 An Introduction to Problem Solving (continued)

Example: A rectangular field is five times as long as it is wide. If the perimeter of the field is 288 yards, what are the field’s dimensions?

Let \(w \) represent the width of the rectangular field (in yards).

The length of the field is \(5w \).

Perimeter = \(w + w + 5w + 5w \)

288 = \(2w + 2 \cdot 5w \)

288 = \(2w + 10w \)

288 = 12w

\[
\frac{288}{12} = \frac{12w}{12}
\]

\(24 = w \)

Check:

\(24 + 24 + 120 + 120 = 288 \)

Length = \(5w \)

= \(5(24) \)

= 120

The field’s dimensions are 24 yards by 120 yards.
Example: This year's salary, $42,074, is a 9% increase over last year's salary. What was last year's salary?

Let L represent last year's salary (in dollars)

\[
\text{this year's salary} = \text{last year's salary} + \text{a 9\% increase}
\]

\[
42,074 = L + 0.09L
\]

\[
42,074 = 1.09L
\]

\[
\frac{42,074}{1.09} = \frac{L}{1.09}
\]

\[
38,600 = L
\]

Check:

\[
38,600 + 0.09(38,600) = 42,074
\]

Last year's salary was $38,600.
Example: A repair bill on a sailboat came to $1603, including $532 for parts and the remainder for labor. If the cost of labor is $63 per hour, how many hours of labor did it take to repair the sailboat?

Let t represent the time (in hours) it took to repair the sailboat.

Total repair bill = parts + labor

$1603 = 532 + 63t$

$1603 - 532 = 532 + 63t - 532$

$1071 = 63t$

$\frac{1071}{63} = \frac{63t}{63}$

$17 = t$

Check: $532 + 63(17) = 1603$

It took 17 hours of labor to repair the sailboat.
Section 2.7 Solving Linear Inequalities

A linear inequality in one variable $ax + b \leq c$ where a, b, and c are real numbers and the symbol between $ax + b$ and c can be \leq (is less than or equal to), $<$ (is less than), \geq (is greater than or equal to), or $>$ (is greater than).

Example: Graph the solution of each inequality.

a. $x > -3$
b. $x \leq 2$
c. $-4 < x \leq 3$

The round parentheses or the open circle mean the endpoint is not included. The square bracket or the filled in circle mean the endpoint is included.
Table 1: Solution Sets of Inequalities
Let a and b represent real numbers.

<table>
<thead>
<tr>
<th>Inequality</th>
<th>Interval Notation</th>
<th>Set-Builder Notation</th>
<th>Graph</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x > a$</td>
<td>(a, ∞)</td>
<td>${x</td>
<td>x > a}$</td>
</tr>
<tr>
<td>$x \geq a$</td>
<td>$[a, \infty)$</td>
<td>${x</td>
<td>x \geq a}$</td>
</tr>
<tr>
<td>$x < b$</td>
<td>$(-\infty, b)$</td>
<td>${x</td>
<td>x < b}$</td>
</tr>
<tr>
<td>$x \leq b$</td>
<td>$(-\infty, b]$</td>
<td>${x</td>
<td>x \leq b}$</td>
</tr>
</tbody>
</table>

Example: Express the solution set of each inequality in interval notation and graph the interval.

a. $x \geq -5$
b. $x < 4$

![Graph](a)

![Graph](b)

Table 2: Properties of Inequalities

<table>
<thead>
<tr>
<th>Property</th>
<th>The Property in Words</th>
<th>Example</th>
</tr>
</thead>
</table>
| The Addition Property of Inequality | If the same quantity is added to or subtracted from both sides of an inequality, the resulting inequality is equivalent to the original one. | $3x - 5 < 7$
$3x - 5 + 5 < 7 + 5$
$3x < 12$ |
| The Positive Multiplication Property of Inequality | If we multiply or divide both sides of an inequality by the same positive quantity, the resulting inequality is equivalent to the original one. | $3x < 12$
$\frac{3x}{3} < \frac{12}{3}$
x < 4 |
| The Negative Multiplication Property of Inequality | If we multiply or divide both sides of an inequality by the same negative quantity and reverse the direction of the inequality symbol, the resulting inequality is equivalent to the original one. | $-5x < 20$
$\frac{-5x}{-5} > \frac{20}{-5}$
x > -4 |
Example: Solve $2x - 7 < 3$ and graph the solution set on a number line. Write the solution set in interval notation.

\[
2x - 7 < 3 \\
2x - 7 + 7 < 3 + 7 \\
2x < 10 \\
\frac{2x}{2} < \frac{10}{2} \\
x < 5
\]

\[(-\infty, 5)\]

Example: Solve $3 - 5x \leq 13$ and graph the solution set on a number line. Write the solution set in interval notation.

\[
3 - 5x \leq 13 \\
3 - 5x - 3 \leq 13 - 3 \\
-5x \leq 10 \\
\frac{-5x}{-5} \geq \frac{10}{-5} \\
x \geq -2
\]

\([-2, \infty)\]
Example: Solve $4(x+1)+2 \leq 3x+6$ and graph the solution set on a number line. Write the solution set in interval notation.

\[4(x+1)+2 \leq 3x+6 \]
\[4x+4 +2 \leq 3x+6 \]
\[4x+6 \leq 3x+6 \]
\[4x+6-6 \leq 3x+6-6 \]
\[4x \leq 3x \]
\[4x-3x \leq 3x-3x \]
\[x \leq 0 \]

\[(-\infty, 0] \]

Example: Solve $x+2 < x+5$ and write the solution set in interval notation.

\[x+2 < x+5 \]
\[x+2-2 < x+5-2 \]
\[x < x+3 \]
\[x-x < x+3-x \]
\[0 < 3 \ True \]

Every real number is a solution.

\[(-\infty, \infty) \]
Recognizing Inequalities with No Solution or Infinitely Many Solutions
If you attempt to solve an inequality with no solution or one that is true for every real number, you will eliminate the variable.

- An inequality with no solution results in a false statement, such as $0 > 1$. The solution set is \emptyset, the empty set.
- An inequality that is true for every real number results in a true statement, such as $0 < 1$. The solution set is $(-\infty, \infty)$, which can be written as $\{x | x \text{ is a real number}\}$.

Example: Solve $5(x+1) > 5x + 8$.

\[
\begin{align*}
5(x+1) &> 5x + 8 \\
5x + 5 &> 5x + 8 \\
5x + 5 - 5 &> 5x + 8 - 5 \\
5x &> 5x + 3 \\
5x - 5x &> 5x + 3 - 5x \\
0 &> 3 \quad \text{False!}
\end{align*}
\]

There are no solutions.