
Haberman     MTH 95 
 

Section IV:  Radical Expressions, Equations, and Functions 
 

 
Module 3:  Multiplying Radical Expressions 

 
 
Recall the property of exponents that states that .  We can use this rule to 
obtain an analogous rule for radicals: 
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Product Rule for Radicals 
 

If  a  and  b  are positive real numbers and  n  is a positive integer, then n n na b ab⋅ = . 

 
 

 EXAMPLE: Perform the indicated multiplication, and simplify completely. 
 
a. 182 ⋅  b. 4 42 23 27x x⋅  

 
SOLUTIONS: 
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(product rule for radicals)

(write  as a perfect square)
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(product rule for radicals)

(product rule for radicals)

(we need to use the absolute value since  is even)
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Product Rule for Simplifying Radical Expressions: 
 
When simplifying a radical expression it is often necessary to use the following 
equation which is equivalent to the product rule: 
 

n n nab a b= ⋅ . 

 
 
 

 EXAMPLE: Simplify 40 . 
 
 
SOLUTION: Since 40 isn’t a perfect square, we need to write 40 as a product containing a 

factor that is a perfect square: 
 

 
40 4 10
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(factor  using perfect square(s))

(product rule for simplifying radical expressions)
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 EXAMPLE: Simplify the following. 
 

a. 3 24  b. 4 816w  c. 554d  
 
 
SOLUTIONS: 
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24(factor  using perfect cube(s))

(product rule for simplifying radical expressions)

= ⋅

= ⋅

=

a.   

 

 
 

( )

4 48 84

44 4 24

2 2

16 16

2

2

(product rule for simplifying radical expressions)

(we don't need the absolute value here since  must be positive)
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(product rule for simplifying radical expressions)
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 Try these yourself and check your answers. 
Perform the indicated multiplication, and simplify completely. 
 

a. 2114 ⋅ . b. 23 33 9y y⋅ . 
 
 
SOLUTIONS: 
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 EXAMPLE: Perform the following multiplication:  3 4x x⋅ . 
 
SOLUTION: 
 

 The key step when the indices of the radicals are different is to write the expressions 
with rational exponents. 

 
1 3 1 43 4

1 3 1 4

4 12 3 12

7 12

12 7

(write with rational exponents)

(use a propery of exponents)

(create a common denominator for the exponent)

(use another property of exponents)

(write final answer i
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 Try these yourself and check your answers. 
Perform the indicated multiplication, and simplify completely. 

 

a. 8 3t t⋅  b. 23 2 3p p⋅  
 
 
SOLUTIONS: 

 
8 3 1 2 3 8

1 2 3 8

4 8 3 8

7 8

8 7

(write with rational exponents)

(use a property of exponents)

(create a common denominator for the exponents)

(use another property of  exponents)

(write final answ
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er in radical notation to agree with the original expression)
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(write with rational exponents)

(create a common denominator for the exponents)
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