I)=,dd +(I)   1Courier NewSymbolew Roman1Courier New1Courier NewTimes New RomanTimes New Roman1Courier New1Courier New1Courier New1Courier New S FV S FV S FV S FV?/ <```@@@?~~~~~ԱޱޱԱ޿޿ph (((Pdd{ d< p {2(\?̬?̬̬?(\????@@@@@@033333??@^ߛOw?̌???tG@rVDT@@@?@ @@@oyl4??@?@?@@dddddddddddddddddddddddddddddddddddddddd 2??@????????+Jɶ?DEFGHIJHkPmo&Bԣaaٳ?u@  1-(x^2+y^2) x^2+y^2=1PP2??@?PeB׳???????  $ppD001/2 sqrt(3)/2seg (0,0) to (1/2,sqrt(3)/2)PP2???$$$?PeB׳??????????PeB׳?»ûĻŻƻǻȻLu.5 sqrt(3)/2pi/4(x,y) = (.5,sqrt(3)/2)PPd2??h!@$$$J{/L ????????(,048<@p@4xxL.22#r = .22; 0.000000 <= t <= 1.0472000.00000;1.047202???$$$ i?YQn??????? LMN OPQRqzlν800 cos(.48) sin(.48)#seg (0,0) to (cos(.485),sin(.485))\2???$$$ i?YQn????????? i?YQn? ɻʻ̻ͻλ ϻлt cos(.48) sin(.48)pi/4(x,y) = (cos(.485),sin(.485)).5hўd2??h!@$$$ףp= ????????S T$U(V,W0X4Y~x; |\.34#r = .27; 0.000000 <= t <= 0.502350 0.00000;0.422???$$$ i? i???????? ѻһӻ Ի$ջ(ֻ,׻TWW#x cos(.48)1/2 cos(.48)0(?2???$$$ i??????? 8Z<[@\D]H^L_P`-,Sȡ|AHA00 cos(.48)02???$$$Bj?Bj????????0ػ4ٻ8ڻ<ۻ@ܻDݻH޻d= .p+`/ cos(.48)-.09.1 cos(.48)-.090422???$$$Bj??(i????????TaXb\c`ddehflgtzz\[ݾݼ cos(.48)-.09.1 cos(.48).1d2??h!@$$$h!@???????x8$%&'(p +,ItxHcos(t)sin(t)0.0;2pixyzJXT@&Bԣaaٳ?@@@@@@@@@@@@@@@@@@@@@@@@@@@ @T @T @Tx42v k?C^}W?2z;^lTimes New Roman y(.5,sqrt(3)/2)?\/X;W?@9?pOU?(\?Times New Roman  x^2+y^2=18%g@/x6j?lseg (0,0) to (1/2,sqrt(3)/2)pܪ@1q!t?$(x,y) = (.5,sqrt(3)/2)-1Ppܪ?4333333Pʭ?ܬr = .22; 0.00000 <= t <= 1.047200pܪ?4333333" ?segment (0,0)--(cos(.48),sin(.48))))#pܪ̬?Y?L(x,y) = (cos(.48),sin(.48)))pܪ̬?`#fr = .34; 0.00000 <= t <= 0.42350pܪ033333?segment (cos(.48),1/2)--(cos(.48),0))pܪ̬?N1Courier Newtsegment (0,0)--(cos(.48),0)pܪ̬?1Courier New, segment (cos(.48)-.09,.1)--(cos(.48)-.09,0)):6\pܪ̬?N1Courier New䱼5 segment (cos(.48)-.09,.1)--(cos(.48),.1))0)pܪ̬?1Courier NewO (x,y) = (cos(t),sin(t)); 0.0 <= t <= 2pipܪ̬?PC1Courier New