Module 1: Intro. to Radical Expressions and Functions

The term **radical** is a fancy mathematical term for the things like *square roots* and *cube roots* that you may have studied in previous mathematics courses.

SQUARE ROOTS

DEFINITION: A **square root** of a number a is a number c satisfying the equation $c^2 = a$.

EXAMPLE: A square root of 9 is 3 since $3^2 = 9$. Another square root of 9 is -3 since $(-3)^2 = 9$.

DEFINITION: The **principal square root** of a number a is the nonnegative real-number square root of a.

RADICAL NOTATION: The principal square root of a is denoted by \sqrt{a}. The symbol $\sqrt{\text{ }}$ is called a *radical sign*. The expression under the radical sign is called the *radicand*.

EXAMPLE: The square roots of 100 are 10 and -10. The principal square root of 100 is 10, which can be expressed in radical notation by the equation $\sqrt{100} = 10$.

EXAMPLE: Are there any real-number square roots of -25? According to the definition of square root (above) a square root of -25 would need to be a solution to the equation $c^2 = -25$. But there is no real number which when squared is negative! Thus, there is no real-number solution to this equation, so there are no real numbers that are square roots of -25. In fact there are no real-number square roots of ANY negative number!
Important Facts About Square Roots

1. Every positive real number has exactly TWO real-number square roots. (The two square roots of \(\alpha \) are \(\sqrt{\alpha} \) and \(-\sqrt{\alpha} \).)

2. Zero has only ONE square root: itself. \(\sqrt{0} = 0 \).

3. NO negative real number has a real-number square root.

EXAMPLE: Simplify the following expressions:

a. \(\sqrt{64} = 8 \)

b. \(\sqrt{\frac{9}{25}} = \frac{3}{5} \)

c. \(\sqrt{4m^2} = 2|m| \)

Here we need to use the absolute value since \(m \) could represent a negative number, but once \(m \) is squared and then “square rooted,” the result will be positive.

d. \(\sqrt{x^2 + 6x + 9} = \sqrt{(x + 3)^2} = |x + 3| \)

Again, we need the absolute value since \(x + 3 \) could represent a negative number.
The principal square root can be used to define the square root function: \(f(x) = \sqrt{x} \).

Since negative numbers don’t have square roots, the domain of the square root function is the set of non-negative real numbers: \([0, \infty)\). Let’s look at a graph of the square root function. We’ll use a table-of-values to obtain ordered pairs to plot on our graph:

<table>
<thead>
<tr>
<th>(x)</th>
<th>(f(x) = \sqrt{x})</th>
<th>((x, f(x)))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>(0, 0)</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>(1, 1)</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>(4, 2)</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>(9, 3)</td>
</tr>
<tr>
<td>16</td>
<td>4</td>
<td>(16, 4)</td>
</tr>
</tbody>
</table>

The graph of \(f(x) = \sqrt{x} \).

Notice that the range of the square root function is the set of non-negative real numbers: \([0, \infty)\).

CUBE ROOTS

DEFINITION: The cube root of a number \(a \) is a number \(c \) satisfying the equation \(c^3 = a \).

EXAMPLE: The cube root of 8 is 2 since \(2^3 = 8 \). Note that 2 is the only cube root of 8.

RADICAL NOTATION: The cube root of \(a \) is denoted by \(³\sqrt{a} \).
EXAMPLE: a. The cube root of 1000 is 10 since \(10^3 = 1000\). Using radical notation, we could write \(\sqrt[3]{1000} = 10\).

b. The cube root of \(-1000\) is \(-10\) since \((-10)^3 = -1000\). Using radical notation, we could write \(\sqrt[3]{-1000} = -10\).

Important Fact About Cube Roots

Every real number has exactly ONE real-number cube root.

EXAMPLE: Simplify the following expressions.

a. \(\sqrt[3]{-512}\)

b. \(\sqrt[3]{\frac{27}{125}}\)

c. \(\sqrt[3]{8k^3}\)

d. \(\sqrt[3]{-8k^3}\)

SOLUTIONS:

a. \(\sqrt[3]{-512} = \sqrt[3]{(-8)^3} = -8\)

b. \(\sqrt[3]{\frac{27}{125}} = \sqrt[3]{\left(\frac{3}{5}\right)^3} = \frac{3}{5}\)

c. \(\sqrt[3]{8k^3} = \sqrt[3]{(2k)^3} = 2k\)
The cube root can be used to define the **cube root function**:

\[g(x) = \sqrt[3]{x} \].

Since all real numbers have a real-number cube root, the *domain* of the cube root function is the set of real numbers, \(\mathbb{R} \). Let’s look at a graph of the cube root function.

<table>
<thead>
<tr>
<th>(x)</th>
<th>(g(x) = \sqrt[3]{x})</th>
<th>((x, g(x)))</th>
</tr>
</thead>
<tbody>
<tr>
<td>-8</td>
<td>-2</td>
<td>(-8, -2)</td>
</tr>
<tr>
<td>-1</td>
<td>-1</td>
<td>(-1, -1)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>(0, 0)</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>(1, 1)</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>(8, 2)</td>
</tr>
<tr>
<td>27</td>
<td>3</td>
<td>(27, 3)</td>
</tr>
</tbody>
</table>

Notice that the *range* of the cube root function is the set of real numbers, \(\mathbb{R} \).

We can make a variety of functions using the square and cube roots.
EXAMPLE: Let \(w(x) = \sqrt{2x - 5} \).

a. Evaluate \(w(3) \).

b. Evaluate \(w(15) \).

c. Evaluate \(w(0) \).

d. What is the domain of \(w \)?

SOLUTIONS:

a. \[w(3) = \sqrt{2(3) - 5} \]
 \[= \sqrt{6 - 5} \]
 \[= \sqrt{1} \]
 \[= 1 \]

b. \[w(15) = \sqrt{2(15) - 5} \]
 \[= \sqrt{30 - 5} \]
 \[= \sqrt{25} \]
 \[= 5 \]

c. \[w(0) = \sqrt{2(0) - 5} \]
 \[= \sqrt{0 - 5} \]
 \[= \sqrt{-5} \]

Since there is no real number that is the square root of \(-5\), we say that \(w(0) \) does not exist.

d. Since only non-negative numbers have real-number square roots, we can only input into the function \(w \) \(x \)-values that make the expression under the square root sign non-negative, i.e., \(x \)-values that make \(2x - 5 \geq 0 \).

\[
2x - 5 \geq 0
\]
\[
\Rightarrow \quad 2x \geq 5
\]
\[
\Rightarrow \quad x \geq \frac{5}{2}
\]

Thus, the domain of \(w \) is the set of real numbers greater than or equal to \(\frac{5}{2} \). In interval notation, the domain of \(w \) is \(\left[\frac{5}{2}, \infty \right) \).
EXAMPLE: Let $h(t) = \sqrt[3]{t + 27}$.

a. Evaluate $h(t)$ if $t = 37$.

b. Evaluate $h(t)$ if $t = -152$.

c. Evaluate $h(t)$ if $t = 0$.

d. What is the domain of h?

SOLUTIONS:

a. $h(37) = \sqrt[3]{37 + 27}$

 $= \sqrt[3]{64}$

 $= 4$

b. $h(-152) = \sqrt[3]{-152 + 27}$

 $= \sqrt[3]{-125}$

 $= -5$

c. $h(0) = \sqrt[3]{0 + 27}$

 $= \sqrt[3]{27}$

 $= 3$

d. Since every real number has a cube root, there are no restrictions on which t-values that can be input into the function h. Therefore, the domain of h is the set of real numbers, \mathbb{R}.
OTHER ROOTS

We can extend the concept of square and cube roots and define roots based on any positive integer \(n \).

DEFINITION: For any integer \(n \), an \(n^{\text{th}} \) root of a number \(a \) is a number \(c \) satisfying the equation \(c^n = a \).

RADICAL NOTATION: The principal \(n^{\text{th}} \) root of \(a \) is denoted by \(\sqrt[n]{a} \).

EXAMPLE: What is the real-number 4\(^{\text{th}}\) root of 81?

SOLUTION: Since \(3^4 = 81 \) and \((-3)^4 = 81\) both 3 and –3 are 4\(^{\text{th}}\) roots of 81. The principal 4\(^{\text{th}}\) root of 81 is 3 (since principal roots are positive). We can write \(\sqrt[4]{81} = 3 \).

EXAMPLE: What is the real-number 5\(^{\text{th}}\) root of 32?

SOLUTION: Since \(2^5 = 32 \) the only 5\(^{\text{th}}\) root of 32 is 2. The principal 5\(^{\text{th}}\) root of 32 is 2 (since 2 is the only 5\(^{\text{th}}\) root of 32). We can write \(\sqrt[5]{32} = 2 \).

The two examples above expose a fundamental difference between odd and even roots. We only found one real number 5\(^{\text{th}}\) root of 32, and 5 is an odd number, but we found two real number 4\(^{\text{th}}\) roots of 81 and 4 is an even number.

Important Facts About Odd and Even Roots

1. Every real number has exactly ONE real-number \(n^{\text{th}} \) root if \(n \) is odd.

2. Every positive real number has TWO real-number \(n^{\text{th}} \) roots if \(n \) is even.

NOTE: Negative numbers do not have real-number even roots. So if \(n \) is even, we say that the \(n^{\text{th}} \) root of a negative number does not exist.
EXAMPLE: Simplify the following expressions.

a. \(\sqrt[6]{x^6} \)

b. \(\sqrt[11]{t^{11}} \)

SOLUTIONS:

a. \(\sqrt[6]{x^6} = |x| \)

Here we need to use the absolute value since \(x \) could represent a negative number but once it is raised to an even power, the result will be positive.

b. \(\sqrt[11]{t^{11}} = t \)

Here we do not need to use the absolute value since if \(t \) is negative, once it is raised to an odd power the result will still be negative, and there is a real-number 11th root of a negative number.

We can use \(n^{\text{th}} \) roots to define functions.

EXAMPLE: Let \(p(x) = \sqrt[4]{x - 1} \).

a. Evaluate \(p(17) \).

b. Evaluate \(p(-15) \).

c. Evaluate \(p(2) \).

d. What is the domain of \(p \) ?

SOLUTIONS:

a. \(p(17) = \sqrt[4]{17 - 1} \)

\[= \sqrt[4]{16} \]

\[= \sqrt[4]{2^4} \]

\[= 2 \]
b. \(p(-15) = \sqrt[4]{-15} - 1 \)
\[= \sqrt[4]{-16} \]

Since there is no real-number 4\(^{th}\) root of a negative number, we say that \(p(-15) \) is undefined.

c. \(p(2) = \sqrt[4]{2} - 1 \)
\[= \sqrt[4]{1} \]
\[= 1 \]

d. Since only non-negative numbers have real-number 4\(^{th}\) roots, we can only input into the function \(x \)-values that make the expression under the radical sign non-negative, i.e., \(x \)-values that make \(x - 1 \geq 0 \).
\[
\begin{align*}
 x - 1 & \geq 0 \\
 \Rightarrow \quad & x \geq 1
\end{align*}
\]

Thus, the domain of \(p \) is \([1, \infty)\).