Scientific Notation

The distance from the sun to the earth is approximately 149,600,000 kilometers. In scientific notation, it is approximately $1.5 \cdot 10^8$ kilometers.

The length of an electron is approximately 0.000000000000282 meters. In scientific notation, it is $2.82 \cdot 10^{-15}$ meters.

We need scientific notation because it is easier than writing long numbers.

To fully understand scientific notation, let's learn a pattern.

If we were charged \$1.20 ten times, we would pay a total of \$12.00. We can write:

$$1.2 \cdot 10 = 12$$
, or $1.2 \cdot 10^1 = 12$

Similarly, if we are charged \$1.20 one hundred times, we would pay a total of \$120. We can write:

$$1.2 \cdot 100 = 120$$
, or $1.2 \cdot 10^2 = 120$

The pattern is: If a number is multiplied by 10^m , where m is a positive integer, we can simply move the decimal point to the right m times. For example:

$$1.2 \cdot 10^5 = 120000$$
move decimal point to the right 5 times

We use this pattern to change big numbers into scientific notation:

$$120000 = 120000. = 1.2 \cdot 10^{5}$$
move decimal point to the left 5 times

To qualify for scientific notation, the decimal must be in the range of [1,10). For example, neither $12\cdot 10^4$ nor $0.12\cdot 10^6$ qualify as scientific notation, even though they are equivalent to $1.2\cdot 10^5$.

It's difficult to try to remember which side to move the decimal point. Instead of memorizing rules, understand it this way: When we change 120000 to 1.2, we made the number smaller. To compensate, we should multiply 1.2 with a big number like 10^5 . This is why $120000 = 1.2 \cdot 10^5$ makes sense.

Earlier, we learned negative exponents. We learned:

$$10^{-1} = \frac{1}{10^{1}} = 0.1$$
$$10^{-2} = \frac{1}{10^{2}} = 0.01$$
$$10^{-3} = \frac{1}{10^{3}} = 0.001$$

Again, a negative exponent and a negative number are two different concepts!

Now we have:

$$1.2 \cdot 10^{-1} = 1.2 \cdot 0.1 = 0.12$$

$$1.2 \cdot 10^{-2} = 1.2 \cdot 0.01 = 0.012$$

$$1.2 \cdot 10^{-3} = 1.2 \cdot 0.001 = 0.0012$$
...

Now we can change a small number into scientific notation:

$$0.000012 = 0.000012 = 1.2 \cdot 10^{-5}$$
move decimal point to the right 5 times

Again, instead of memorizing which way to move, think this way: If we change 0.000012 to 1.2, we made the number bigger. To compensate, we should multiply 1.2 by a small number like 10^{-5} .

[**Example 1**] Do multiplication $8.4 \cdot 10^5 \cdot 4.5 \cdot 10^3$ and write your answer in scientific notation.

[Solution]

$$8.4 \cdot 10^5 \cdot 4.5 \cdot 10^3$$
$$= 8.4 \cdot 4.5 \cdot 10^5 \cdot 10^3$$
$$= 37.8 \cdot 10^8$$

Be careful: You are not done because the result is not in scientific notation yet. We have to change 37.8 to a number in the range of [1,10). We have:

$$8.4 \cdot 10^{5} \cdot 4.5 \cdot 10^{3}$$

$$= 8.4 \cdot 4.5 \cdot 10^{5} \cdot 10^{3}$$

$$= 37.8 \cdot 10^{8}$$

$$= 3.78 \cdot 10^{1} \cdot 10^{8}$$

$$= 3.78 \cdot 10^{9}$$

Note that when we changed 37.8 to $3.78 \cdot 10^1$, we should think this way: We changed 37.8 to 3.78, from a big number to a small number. To compensate, we have to multiply 3.78 by a big number, like 10^1 . It would not make sense to multiply 3.78 by 10^{-1} to make it even smaller.

[**Example 2**] Do division $\frac{4.2\cdot 10^{-9}}{8.4\cdot 10^{-2}}$ and write your answer in scientific notation.

[Solution]

$$\frac{4.2 \cdot 10^{-9}}{8.4 \cdot 10^{-2}}$$

$$= \frac{4.2}{8.4} \cdot 10^{-9 - (-2)}$$

$$= 0.5 \cdot 10^{-7}$$

$$= 5 \cdot 10^{-1} \cdot 10^{-7}$$

$$= 5 \cdot 10^{-8}$$

Similarly, when we changed 0.5 to $5 \cdot 10^{-1}$, we changed 0.5 to a bigger number 5. To compensate, we need to multiply 5 by a small number like 10^{-1} .