Shifting Parabola Up/Down

A parabola is the graph of a quadratic function. A quadratic function, in its standard form, looks like

$$f(x) = ax^2 + bx + c$$

Here are some basic terms about a parabola:

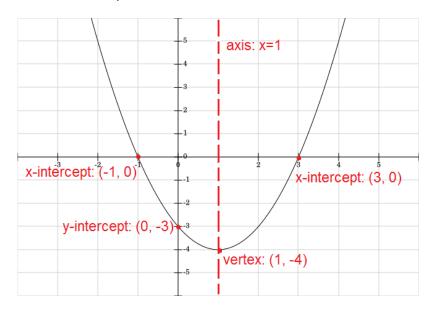


Figure 1: terms related to parabola

vertex: The highest or lowest point of a parabola is its vertex. For the parabola in the graph, the vertex is (1, -4), the lowest point. If this parabola is upside down, its vertex would be the highest point.

y-intercept: A parabola crosses the y-axis at its y-intercept. A parabola has only one y-intercept.

x-intercept: A parabola crosses the x-axis at its x-intercept(s). In the graph, the parabola has two x-intercepts, (-1, 0) and (3, 0). A parabola could have two, one or no x-intercepts, depending on the location of the parabola.

axis: The vertical line crossing a parabola's vertex is its axis, x = 1 in the graph. A parabola's axis is also its line of symmetry, meaning if we fold the parabola by its axis, its two sides would match.

As a starting point, let's graph the most basic quadratic function, $f(x) = x^2$.

If a function's equation is given, we can always graph it by building a table of points.

Table and graph of $f(x) = x^2$

X	У	points
-3	$y = (-3)^2 = 9$	(-3,9)
-2	$y = (-2)^2 = 4$	(-2,4)
-1	$y = (-1)^2 = 1$	(-1,1)
0	$y = 0^2 = 0$	(0,0)
1	$y = 1^2 = 1$	(1,1)
2	$y = 2^2 = 4$	(2,4)
3	$y = 3^2 = 9$	(3,9)

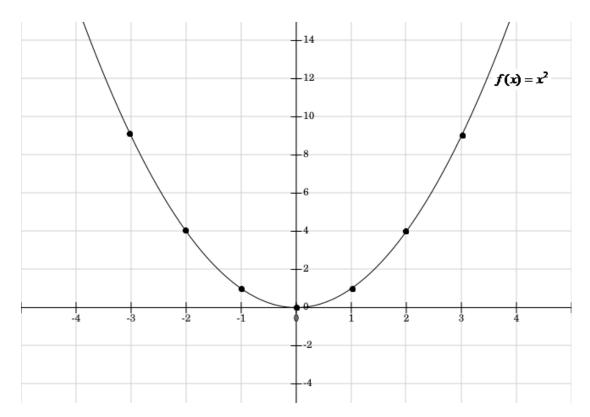


Figure 2: Graph of $f(x)=x^2$

By the graph, the vertex of $f(x) = x^2$ is (0, 0). Its *y*-intercept is (0, 0). It has one *x*-intercept: (0, 0). Its axis is the *y*-axis, x = 0.

Next, let's graph the following 3 parabolas in the same graph, and find a pattern:

$$f(x) = x^2$$
, $g(x) = x^2 + 2$, $h(x) = x^2 - 2$

Tables and Graphs of	f(x) = x	2 , $g(x) = x$	$x^2 + 2$, $h(x)$	$= x^2 - 2$
) (**)	, 6 ()	/ (,	, –

x	$f(x) = x^2$	х	$g(x) = x^2 + 2$	х	$h(x) = x^2 - 2$
-3	$y = (-3)^2 = 9$	-3	$y = (-3)^2 + 2 = 11$	-3	$y = (-3)^2 - 2 = 7$
-2	$y = (-2)^2 = 4$	-2	$y = (-2)^2 + 2 = 6$	-2	$y = (-2)^2 - 2 = 2$
-1	$y = (-1)^2 = 1$	-1	$y = (-1)^2 + 2 = 3$	-1	$y = (-1)^2 - 2 = -1$
0	$y = 0^2 = 0$	0	$y = 0^2 + 2 = 2$	0	$y = 0^2 - 2 = -2$
1	$y = 1^2 = 1$	1	$y = 1^2 + 2 = 3$	1	$y = 1^2 - 2 = -1$
2	$y = 2^2 = 4$	2	$y = 2^2 + 2 = 6$	2	$y = 2^2 - 2 = 2$
3	$y = 3^2 = 9$	3	$y = 3^2 + 2 = 11$	3	$y = 3^2 - 2 = 7$

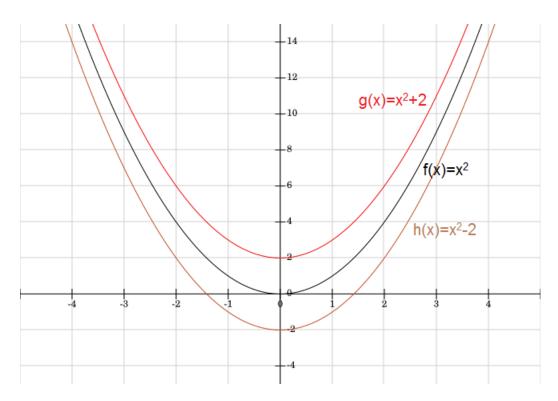


Figure 3: Graphs of f(x), g(x) and h(x)

It's easy to observe this pattern. Assume a > 0.

If we change the function from $f(x) = x^2$ to $g(x) = x^2 + a$, the parabola shifts up by a units.

If we change the function from $f(x) = x^2$ to $h(x) = x^2 - a$, the parabola shifts down by a units.

Again, don't memorize these patterns. Instead, when you need them, sketch tables and graphs on scratch paper and find patterns as needed.