Shifting Parabola Left/Right

Earlier, we learned that, for $f(x) = ax^2 + c$, changes in the value of c will shift the parabola up or down, and changes in the value of a will make the parabola thinner or wider.

Today, we will learn how to shift a parabola to the left or right. First, we need to learn two forms of a quadratic function.

Recall that a line's equation has different forms:

slope-intercept form: y = Mx + B

standard form: Ax + By = C

Similarly, a quadratic function has different forms:

standard form: $f(x) = ax^2 + bx + c$

vertex form: $f(x) = a(x-h)^2 + k$

For a line's equation, the slope-intercept form is more useful, telling us the line's slope M and y-intercept (0, B).

For a quadratic function's equation, the vertex form is more useful, telling us the parabola's vertex (h,k), and the positive/negative sign of a tells us whether the parabola faces up or down. For example, we can tell the vertex of $f(x) = 2(x-1)^2 + 3$ is (1,3). Its graph verifies this:

Figure 1: graph of $f(x)=2(x-1)^2+3$

In later lessons, we will learn how to change a quadratic function's equation from the less-useful standard form to the more-useful vertex form. In today's lesson, we will learn how the value of h changes a parabola's position in a graph.

Let's graph the following quadratic functions:

x	$r(x) = (x-1)^2$	x	$s(x) = x^2$	x	$t(x) = (x+2)^2$
-3	$y = (-3 - 1)^2 = 16$	-3	$y = (-3)^2 = 9$	-3	$y = (-3+2)^2 = 1$
-2	$y = (-2 - 1)^2 = 9$	-2	$y = (-2)^2 = 4$	-2	$y = (-2+2)^2 = 0$
-1	$y = (-1 - 1)^2 = 4$	-1	$y = (-1)^2 = 1$	-1	$y = (-1+2)^2 = 1$
0	$y = (0-1)^2 = 1$	0	$y = 0^2 = 0$	0	$y = (0+2)^2 = 4$
1	$y = (1-1)^2 = 0$	1	$y = 1^2 = 1$	1	$y = (1+2)^2 = 9$
2	$y = (2-1)^2 = 1$	2	$y = 2^2 = 4$	2	$y = (2+2)^2 = 16$
3	$y = (3-1)^2 = 2$	3	$y = 3^2 = 9$	3	$y = (3+2)^2 = 25$

Table and graphs of
$$r(x) = (x-1)^2$$
, $s(x) = x^2$, $t(x) = (x+2)^2$

Here is the pattern: Compared to $s(x) = x^2$, the graph of $r(x) = (x-1)^2$ shifted to the right by 1 unit, and the graph of $t(x) = (x+2)^2$ shifted to the left by 2 units.

This pattern is counter-intuitive, as the left is the negative direction! This is another reason why you shouldn't try to memorize these patterns. Build a table like what we did earlier, and you can observe the patterns.

To help you make sense why the graph of $t(x) = (x + 2)^2$ shifted to the left, think this way:

For $s(x) = x^2$, to make s(x) = 0, we can let x = 0. The point (0,0) is also the vertex of $s(x) = x^2$.

For $t(x) = (x+2)^2$, to make t(x) = 0, we cannot plug in x = 0 any more. We have to plug in x = -2. That's why the vertex of $t(x) = (x+2)^2$ is (-2,0). Compared to (0,0), the vertex shifted to the left.

I hope this helps you understand why the graph of $t(x) = (x+2)^2$ shifted to the left by 2 units, compare to the graph of $s(x) = x^2$.