Locating Intercepts of Parabola

Earlier, we learned how to sketch the graph of a parabola $f(x) = a(x-h)^2 + k$:

- 1. Plot the vertex (h,k).
- 2. If a > 0, the parabola faces up; if a < 0, the parabola faces down.
- 3. If |a| > 1, make the parabola thinner than the standard parabola $y = x^2$; if |a| < 1, make the parabola wider than $y = x^2$; if |a| = 1, leave the parabola as wide as $y = x^2$.

In the last lesson, we learned how to locate the vertex even if the function is given in standard form $g(x) = ax^2 + bx + c$. However, there is still an issue: If $|a| \ne 1$, we don't know exactly how much thinner or wider the graph should become.

In this lesson, we will learn how to make our sketched parabolas more accurate by locating its *y*-intercept and *x*-intercept(s), if any.

Locating Parabola's Y-Intercept

Let's review how to find the *y*-intercept of y = 2x + 3. I hope you didn't simply memorized that the "3" is the *y*-value of the line's *y*-intercept.

Since a function's y-intercept crosses the y-axis, its x value must be 0—otherwise the point would not be on the y-axis. This is why, to find a function's y-intercept, we plug x = 0 into the equation and then solve for y. For y = 2x + 3, we have:

$$y = 2 \cdot 0 + 3 = 3$$

This is why the *y*-intercept of y = 2x + 3 is (0,3).

We apply the same rule to find a quadratic function's y-intercept.

[**Example 1**] Find the *y*-intercept of $p(x) = 3x^2 - 2x + 10$ and $q(x) = 3(x-2)^2 + 10$.

[**Solution**] To find a function's *y*-intercept, we plug in x = 0. We have:

$$p(0) = 3 \cdot 0^2 - 2 \cdot 0 + 10 = 10$$
, and

$$q(0) = 3(0-2)^2 + 10 = 3 \cdot 2^2 + 10 = 22$$
.

Solution: The y-intercept of p(x) is (0,10), and the y-intercept of q(x) is (0,22).

Note that any function can have at most one *y*-intercept. If a function has two *y*-intercepts, say (0,1) and (0,2), it implies the function has two output values when the input is 0, and that would disqualify the relationship as a function.

For a parabola, it always has one and only one *y*-intercept.

Locating a Parabola's X-Intercept(s)

A parabola could have two, one or no *x*-intercepts. See the graph below:

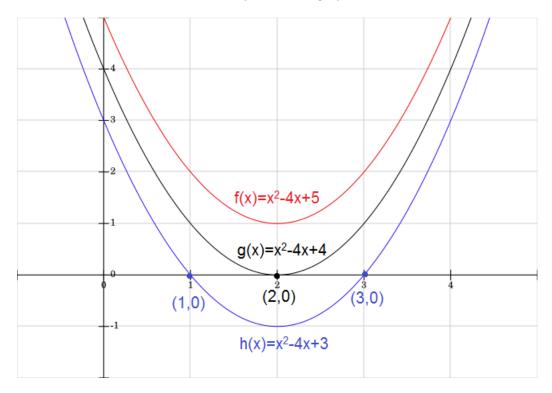


Figure 1: parabolas have different number of x-intercepts

In this graph, the parabola at the top has no x-intercepts; the one in the middle has one x-intercept: (2,0); the one at the bottom has two x-intercepts: (1,0) and (3,0).

Since a function's x-intercept is always on the x-axis, its y-value must be 0. We can clearly see this in Figure 1. The strategy to find a function's x-intercept is to plug in y=0 and then solve for x.

In the following examples, we will try to find the x-intercept(s) of those 3 functions in Figure 1 (pretend you don't know them yet).

[Example 2] Find the *x*-intercepts, if any, of $f(x) = x^2 - 4x + 5$.

[**Solution**] To find f(x) 's x-intercept, we plug f(x) = 0 into $f(x) = x^2 - 4x + 5$, and we have:

$$x^2 - 4x + 5 = 0$$

Since we cannot factor the left side, we will use the Quadratic Formula. Identify that a=1,b=-4,c=5 , and we have:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$x = \frac{-(-4) \pm \sqrt{(-4)^2 - 4 \cdot 1 \cdot 5}}{2 \cdot 1}$$

$$x = \frac{4 \pm \sqrt{-4}}{2}$$

Since we cannot square root a negative number, there is no real solution for $x^2 - 4x + 5 = 0$, implying the function $f(x) = x^2 - 4x + 5$ doesn't have any x-intercept. Figure 1 verifies this result.

[Example 3] Find the x-intercepts, if any, of $g(x) = x^2 - 4x + 4$.

[**Solution**] To find g(x) 's x-intercept, we plug g(x) = 0 into $g(x) = x^2 - 4x + 4$, and we have:

$$x^2 - 4x + 4 = 0$$

The left side of this equation can be factored, so we have:

$$(x-2)^2 = 0$$
$$x-2=0$$
$$x = 2$$

There is one solution, x = 2, for $x^2 - 4x + 4 = 0$, implying the function $g(x) = x^2 - 4x + 4$ has one x-intercept: (2, 0). Figure 1 verifies this result.

[Example 4] Find the *x*-intercepts, if any, of $h(x) = x^2 - 4x + 3$.

[**Solution**] To find h(x) 's x-intercept, we plug h(x) = 0 into $h(x) = x^2 - 4x + 3$, and we have:

$$x^2 - 4x + 3 = 0$$

The left side of this equation can be factored, so we have:

$$(x-1)(x-3) = 0$$

 $x-1=0$ or $x-3=0$
 $x=1$ or $x=3$

There are two solutions, x=1 and x=3, for $x^2-4x+3=0$, implying the function $h(x)=x^2-4x+3$ has two x-intercept: (1, 0) and (3, 0). Figure 1 verifies this result.

Earlier, we learned that a quadratic equation's discriminant, b^2-4ac , determines the equation has 2, 1 or 0 solutions.

In this lesson, we just learned that a quadratic function can have 2, 1 or 0 x-intercept.

Is there a relationship between these two observations? Let's look at this table.

	Example 2	Example 3	Example 4
quadratic function	$f(x) = x^2 - 4x + 5$	$g(x) = x^2 - 4x + 4$	$h(x) = x^2 - 4x + 3$
quadratic equation	$x^2 - 4x + 5 = 0$	$x^2 - 4x + 4 = 0$	$x^2 - 4x + 3 = 0$
value of discriminant	$b^2 - 4ac = -4$	$b^2 - 4ac = 0$	$b^2 - 4ac = 4$
solutions	none	x = 2	x = 1 and $x = 3$
x-intercepts	none	(2, 0)	(1, 0) and (3, 0)

Please take time to understand the following important relationships:

- When we solve a quadratic equation $ax^2 + bx + c = 0$, we are actually looking for the *x*-intercepts of the quadratic function $q(x) = ax^2 + bx + c$.
- When $b^2-4ac>0$, the equation $ax^2+bx+c=0$ has two solutions, and the quadratic function $q(x)=ax^2+bx+c$ has two x-intercepts. This is the case for h(x) in Figure 1.
- When $b^2-4ac=0$, the equation $ax^2+bx+c=0$ has one solution, and the quadratic function $q(x)=ax^2+bx+c$ has one x-intercept. The graph of q(x) touches the x-axis at one point, like g(x) in Figure 1.
- When $b^2-4ac < 0$, the equation $ax^2+bx+c=0$ has no real solution, and the quadratic function $q(x)=ax^2+bx+c$ has not x-intercept. The whole graph of q(x) is either above or below the x-axis, like f(x) in Figure 1.

Studying mathematics is about understanding these relationships.

Let's look at one more example, where the parabola is given in vertex form.

[Example 5] Find the *x*-intercept(s) of $f(x) = 2(x+3)^2 - 8$.

[**Solution**] To find f(x) 's x-intercepts, plug in f(x) = 0, and we have:

$$f(x) = 2(x+3)^2 - 8$$
$$0 = 2(x+3)^2 - 8$$

It's not wise to multiply out $(x+3)^2$ and then deal with a big mess. Instead, we will use the square root property:

$$0+8 = 2(x+3)^{2} - 8 + 8$$

$$8 = 2(x+3)^{2}$$

$$\frac{8}{2} = \frac{2(x+3)^{2}}{2}$$

$$4 = (x+3)^{2}$$

Since 4 > 0, we can square root both sides and have:

$$\pm \sqrt{4} = x + 3$$

 $\pm 2 = x + 3$
 $x + 3 = 2$ or $x + 3 = -2$
 $x = -1$ or $x = -5$

Solution: $f(x) = 2(x+3)^2 - 8$'s *x*-intercepts are (-1,0) and (-5,0).

Look at the step $4 = (x+3)^2$. In some other problem, at this step, you would see something like $-4 = (x+3)^2$. Since $(x+3)^2$ cannot generate a negative number, at this step, we can claim that the parabola has no *x*-intercepts.