Locate Axis and Vertex of Parabola

We learned that the vertex of $g(x) = a(x-h)^2 + k$ is (h,k). What if a quadratic equation is given in standard form $f(x) = ax^2 + bx + c$? In this lesson, we will learn how to locate the vertex for a standard-form quadratic equation.

Let me declare that I hate teaching math formulas without understanding. It makes students think math is about memorizing formulas. I hope you can tell by my lecture notes that I emphasize understanding. However, in this case, to help you understand the vertex formula, I have to use some Algebra skills which you will not need unless you will move on to later math courses. I decided to simply teach how to use the formula. Let's save the understanding part to the next math course.

Recall that the axis of a parabola is the vertical line crossing its vertex.

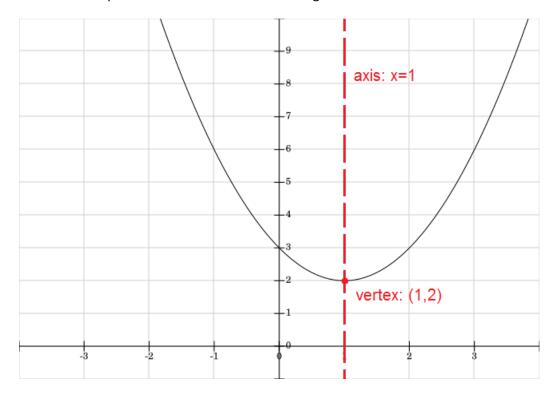


Figure 1: axis and vertex of a parabola

In this graph, the parabola's axis is x = 1, and its vertex is (1,2). If its axis is x = 3, its vertex must be (3, a number), because a parabola's axis always crosses its vertex.

The axis formula and vertex formula are on the next page.

Here is the axis formula:

For
$$f(x) = ax^2 + bx + c$$
, its axis is $x = -\frac{b}{2a}$.

The vertex formula immediately follows the axis formula:

For
$$f(x) = ax^2 + bx + c$$
, its vertex is $(-\frac{b}{2a}, f(-\frac{b}{2a}))$.

The vertex formula is complicated. It should make more sense after we go through Example 1.

[Example 1] Find the axis and vertex of $h(x) = x^2 - 4x + 3$.

[**Solution**] First, identify that a = 1, b = -4, c = 3.

By the axis formula,
$$h(x)$$
 's axis is $x = -\frac{b}{2a} = -\frac{-4}{2 \cdot 1} = -(-2) = 2$.

Since the axis crosses the vertex, we know the vertex must be (2, ?).

Remember how we build tables to graph a parabola? Say in a certain row, x = 2. How would you find the y value? In other words, when x = 2, what is h(2)?

We would plug x = 2 into the function, and we have:

$$h(2) = 2^2 - 4 \cdot 2 + 3 = -1$$

This is how we find the y-value of a quadratic function's vertex. Now the vertex formula

$$(-\frac{b}{2a},f(-\frac{b}{2a}))$$
 should make sense. In Example 1, once we found that $-\frac{b}{2a}=2$, the vertex formula became $(2,h(2))$.

Solution: The axis of h(x) is x = 2, and the vertex of h(x) is (2,-1).

The graph of $h(x) = x^2 - 4x + 3$ is on the next page.

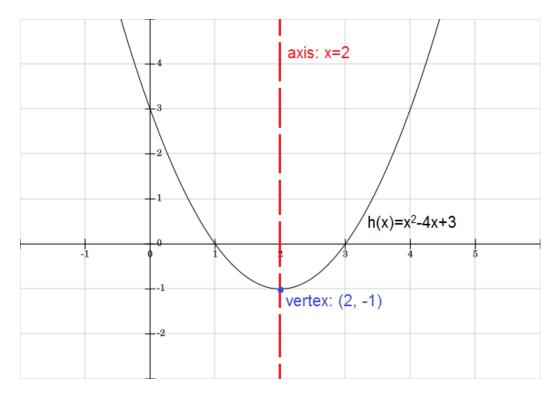


Figure 2: Graph of $h(x)=x^2-4x+3$

[**Example 2**] Find the axis and vertex of $p(x) = -6 - 4x - \frac{1}{2}x^2$

[Solution] First we need to change the function's equation into standard form:

$$p(x) = -\frac{1}{2}x^2 - 4x - 6$$

Next, identify that $a=-\frac{1}{2}$, b=-4, c=-6.

By the axis formula, the axis of p(x) is $x = -\frac{b}{2a} = -\frac{-4}{2 \cdot (-\frac{1}{2})} = -\frac{-4}{-1} = -4$.

By the vertex formula, p(x) 's vertex is (-4, p(-4)). Plug x = -4 into p(x), we have:

$$p(-4) = -\frac{1}{2}(-4)^2 - 4(-4) - 6$$
$$= -\frac{1}{2} \cdot 16 - (-16) - 6$$
$$= -8 + 16 - 6$$
$$= 2$$

Solution: The axis of p(x) is x = -4, and the vertex of p(x) is (-4,2).

Not all vertices (plural form of "vertex") have integer coordinates. You must be ready to handle fractions. See the next example.

[Example 3] Find the axis and vertex of $q(x) = \frac{1}{3}x^2 + x - 2$.

[Solution] Identify that $a = \frac{1}{3}, b = 1, c = -2$.

By the axis formula, the axis of q(x) is $x = -\frac{b}{2a} = -\frac{1}{2 \cdot \frac{1}{3}}$

There are many ways to get rid of the $\frac{1}{3}$ in the denominator. I will show two ways.

We can multiply 3 in both the numerator and denominator:

$$x = -\frac{b}{2a} = -\frac{1}{2 \cdot \frac{1}{3}} = -\frac{1 \cdot 3}{2 \cdot \frac{1}{3} \cdot 3} = -\frac{3}{2}$$

Or, we can do fraction multiplication and then division:

$$x = -\frac{b}{2a} = -\frac{1}{2 \cdot \frac{1}{3}} = -\frac{1}{\frac{2}{3}} = -1 \div \frac{2}{3} = -\frac{1}{1} \cdot \frac{3}{2} = -\frac{3}{2}$$

Now, for q(x) , the vertex formula becomes $(-\frac{3}{2},q(-\frac{3}{2}))$. Let's calculate $q(-\frac{3}{2})$:

$$q(-\frac{3}{2}) = \frac{1}{3}(-\frac{3}{2})^2 + (-\frac{3}{2}) - 2$$

$$= \frac{1}{3} \cdot \frac{9}{4} - \frac{3}{2} - 2$$

$$= \frac{3}{4} - \frac{3}{2} - 2$$

$$= \frac{3}{4} - \frac{6}{4} - \frac{8}{4}$$

$$= -\frac{11}{4}$$

Solution: The axis of q(x) is $x = -\frac{3}{2}$, and the vertex of q(x) is $(-\frac{3}{2}, -\frac{11}{4})$.