# **MODULE 4**

# 4.1 Introduction to Decimals

We use decimals every day as we buy things. For example, each pound of apple costs \$1.99. In this lesson, we will learn the definition of decimals.

# 4.1.1 Definition of Decimals

The best way to understand decimals is to think of money, because we deal with money every day. For example, 1.99 means 1 dollar and 99 cents.

# 4.1.2 Types of Decimals

There are a few types of decimals:

- **terminating decimal**: A terminating decimal has a limited number of places, like 0.1, 1.23, 1.2345.
- **repeating decimal**: A repeating decimal goes on forever repeating the same digits again and again, like 0.111..., 4.121212..., 5.3124124124.... A repeating decimal can be re-written with a bar over the repeating digits:

$$0.111... = 0.\overline{1}$$
$$4.121212... = 0.\overline{12}$$
$$5.3124124124... = 5.3\overline{124}$$

• **irrational decimal**: An irrational decimal goes on forever without repeating any pattern. Here are a few examples:

$$\pi = 3.1415926...$$
  
 $\sqrt{2} = 1.414...$   
 $\sqrt{3} = 1.732...$ 

## The decimal 0.03

Think of the number 0.03, which is 3 cents. Since each dollar has 100 cents, 0.03 represents 3 out of 100, or, in fraction,  $\frac{3}{100}$ . This fraction is read as "three hundredths". This is why we call the second digit after the decimal point the *hundredths place*. We could read 0.03 either as "three hundredths," or simply "zero point zero three." Here is one way to represent 0.03 graphically (the grid has 100 cells):



FIGURE 4.1: Graphic representation of 0.03

#### The decimal 0.3

Let's look at another number: 0.3. This number does not represent 3 cents, because earlier we learned 0.03 represents 3 cents. The difference is that, in 0.3, the number 3 is in the tenths place. In terms of money, 0.3 represents 30 cents. On a price mark, we usually write 0.3 as \$0.30. This revealed an important property of decimals:

If we add the digit 0 to the end of a decimal (behind the decimal point), the decimal's value doesn't change. For example: 0.30 = 0.3, 0.300 = 0.3, 1.20 = 1.2.

Note that  $1.3 \neq 1.03$ : the number 1.3 represents a dollar and 30 cents, while the number 1.03 represents a dollar and 3 cents.

The number 0.3 represents 3 out of 10, or, in fraction,  $\frac{3}{10}$ . This fraction is read as "three tenths".

This is why we call the digit after the decimal point the *tenths place*. We could read 0.3 either as "three tenths," or simply "zero point three."

Here is one way to represent 0.3 graphically:



FIGURE 4.2: Graphic representation of 0.3

#### The decimal 0.003

Finally, let's look at 0.003. Earlier, we learned that 0.03 represents 3 cents. The number 0.003 is three tenth of a cent. If you look carefully at gas price next time you fill up, each gallon actually costs something like \$3.159. Notice the last digit is always 9. Nine tenths of a cent is not a lot of money, but the profit adds up.

The number 0.003 represents 3 out of 1000, or, in fraction,  $\frac{3}{1000}$ . This fraction is read as "three thousandths".

This is why we call the third digit after the decimal point the *thousandths place*. We could read 0.003 either as "three thousandths," or simply "zero point zero zero three."

We will not represent 0.003 graphically here, because it's hard to draw a grid with 1,000 cells.

## 4.1.3 Read Decimals

For the decimal 1, 234.5678, here are the names of each digit:

- 1 is in the thousands place, representing one thousand.
- 2 is in the hundreds place, representing two hundred.
- 3 is in the tens place, representing thirty.
- 4 is in the ones place, representing four.

- 5 is in the tenths place, representing five tenths (50 cents).
- 6 is in the hundredths place, representing six hundredths (6 cents).
- 7 is in the thousandths place, representing seven thousandths.
- 8 is in the ten-thousandths place, representing eight ten-thousandths.
- Here are a few examples of how to read decimals:
  - 12.3 reads: twelve and three tenths
  - 12.34 reads: twelve and thirty four hundredths
  - 12.345 reads: twelve and three hundred forty-five thousandths
  - 12.3456 reads: twelve and three thousand four hundred fifty-six ten-thousandths
  - 12.03 reads: twelve and three hundredths
  - 12.003 reads: twelve and three thousandths

# 4.1.4 Decimals on Number Line

Here are a few examples on how to locate decimals on the number line:



FIGURE 4.3: Decimals on the number line

# 4.1.5 Compare Decimals

Which one is bigger, 3.09 or 3.81? It's easy to compare if we think about money: three dollars and eighty-one cents is bigger than three dollars and nine cents. So we have:

So, when we compare decimals, we compare the tenths' place first, and then the hundredths' place. Even though the digit 9 in 3.09 is bigger than 8 in 3.81, the number 3.81 is bigger than 3.09.

We have the following comparisons:

$$1.29 < 1.30$$
  
 $4.29 > 1.30$   
 $3.04 < 3.4$   
 $0.031 > 0.009$ 

Comparing negative numbers is "opposite:"

$$-1.29 > -1.30$$
  
 $-4.29 < -1.30$   
 $-3.04 > -3.4$   
 $-0.031 < -0.009$ 

Finally, be careful when there are trailing zeroes:

$$1.10 = 1.1$$
  
 $0.03 = 0.030$   
 $-0.300 = -0.3$ 

# 4.1.6 Round Decimals

Earlier, we learned how to round whole numbers. The concept of rounding decimals is the same. For example, to round 1.19 to an integer, we have  $1.19 \approx 1$  because 1.19 is closer to 1 than 2. Let's look at a few examples:

Example 4.1.1 Round 1.295 to the tenths place.

**Solution** In 1.295, the tenths place is 2. The digit behind it is 9. Since 9 is bigger than 4, we round up:

$$1.295 \approx 1.3$$

Example 4.1.2 Round 1.245 to the tenths place.

**Solution** In 1.245, the tenths place is 2. The digit behind it is 4. Since 4 is smaller than 5, we don't round up:

$$1.245 \approx 1.2$$

Example 4.1.3 Round 1.295 to the hundredths place.

**Solution** In 1.295, the hundredths place is 9. The digit behind it is 5. Since 5 is bigger than 4, we round up:

 $1.295\approx 1.30$