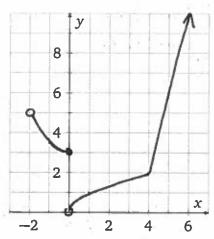

Piecewise-Defined Functions

In these exercises, we will practice plotting a piecewise-defined function. We will also practice reading the graph of a piecewise-defined function.


1. Graph the piecewise defined function by hand. If it helps, plot points first. Use arrows to indicate if a graph extends of the grid in some way. Us solid and hollow dots to indicate special behavior of the function where there is a transition from one rule to another rule.

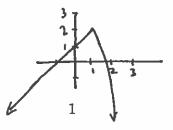
$$f(x) = \begin{cases} x+4, & x \le -2 \\ 2, & -2 < x < 2 \\ 4-x, & x \ge 2 \end{cases}$$
What is the domain and (range of f?

$$(-\infty, -2] \cup (-2, 2) \cup [2, \infty)$$
which simplefies to
$$(-\infty, \infty)$$

2. Graph the piecewise defined function by hand. If it helps, plot points first. Use arrows to indicate if a graph extends of the grid in some way. Us solid and hollow dots to indicate special behavior of the function where there is a transition from one rule to another rule.

$$f(x) = \begin{cases} \frac{1}{2}x^2 + 3, & -2 < x \le 0 \\ \sqrt{x}, & 0 < x < 4 \end{cases}$$

$$4(x-4) + 2, & x \ge 4 \end{cases}$$
What is the domain and range of f ?
$$(0, \infty)$$


$$(-2,0] \cup (0,4) \cup [4,\infty)$$
which simplifies b
$$(-2,\infty)$$

$$(-\infty,1) \cup (1,\infty)$$

3. Consider the function f defined by $f(x) = \begin{cases} x+1, & x<1\\ 3-x^2 & x \ge 1 \end{cases}$. What is the domain of this function to $f(x) = (-\infty, 1) \cup (1, \infty)$

By now we know that making a graph is necessary.

Instructor: Alex Jordan

rage is (-00,2]

4. Use your calculator to graph $f(x) = \begin{cases} x+1, & x<1\\ 3-x^2 & x>1 \end{cases}$.

TI-89: In the Y= menu, enter:

Y1 = when
$$(x < 1, x + 1,$$

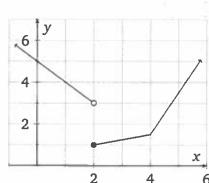
when $(x \ge 1, 3 - x^2,$
1/0))

You can either type "when" directly or use the CATA-LOG. Use the Math—→Test menu to get the symbols < and \geq .

TI-83/84: In the Y= menu, enter:

$$Y1 = (x+1) * (x < 1) + (3-x^2) * (x \ge 1)$$

Math—→Test menu to get the symbols < and \ge .


Casio 330: In the Y= screen, enter:

$$Y1 = \begin{cases} x+1, & x < 1 \\ 3-x^2 & x \ge 1 \end{cases}$$

Use the 2D tab and the special button for piecewisedefined functions.

Go to the Graph screen, making sure that you are in a good Window.

5. Find a piecewise defined formula for the function with this graph.

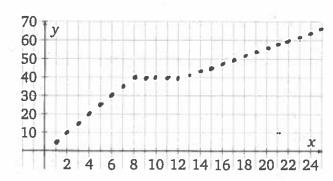
left piece:
$$y = -x+5$$

middle piece: $y = \frac{1}{4}(x-2)+1$
right piece: $y = 2(x-4)+1.5$

the function with this graph.

left piece:
$$y = -x+5$$

middle piece: $y = \frac{1}{4}(x-2)+1$


right piece: $y = 2(x-4)+1.5$

So $f(x) = \begin{cases} -x+5 & x < 2 \\ \frac{1}{4}(x-2)+1 & 2 \le x \le 4 \\ 2(x-4)+1.5 & x > 4 \end{cases}$

6. A museum charges \$5 per person. However, larger groups get a discount. You may purchase a group ticket for \$40 that lets in up to 12 people. If your group has more than 12 people, each additional person costs \$2 more.

Let n be the number of people in a group that wants to enter the museum. Let C be the entrance cost for the entire group. The cost is a function of how many people are in the group: C = f(n)

Plot f(n) for n = 1 up to n = 20, and give a piecewise defined formula for f(n).

$$f(n) = \begin{cases} 5n, & 1 \le n \le 8 \\ 40, & 8 \le n \le 12 \\ 2(n-12) + 40, & n > 12 \end{cases}$$