Introduction to Exponential Functions

In these exercises, we will practice with the basic vocabulary, formulas, and graph shapes for exponential functions.

initial volue

- Write a formula for an exponential function to model these situations.
- a = 5

- initial value a = 0.50 1% is added each week
- a) You have an overdue library book. The initial fine was \$0.50, but that fine collect 1% interest each week. What are the relative growth rate and the growth factor per week? Write a formula for the the function that computes your debt to the -- 0.01/week library t weeks after the due date.
- => b= 1+r b = 1.01
- A(+)=0.50(1.01)

b) A bucket of 8 nonnative fish was dumped into a lake, and the population of these fish begins to double each month. What are the relative growth rate and the growth factor per month? Write a formula for the the function that computes the population *t* months after the dumping.

Multiply by 2 each month => b=2/month => r=b-1= 2-1=1=100%/month. $P(+) = 8.2^{t}$

- Each decade Subtract 15%
- c) The rain forest square mileage is shrinking by 15% per decade. What is the relative growth rate and the growth factor == r = -0.15/herste per decade? Write a formula that computes the square mileage of rain forest tdecades from now, assuming that right now the square footage is A_0 .

initial value

A(+) = A (0.85)+

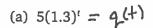
d) A stock initially valued at \$50 increases by 10% each month for 10 months, and then decreases by 10% each month for 10 months. How much is it worth now? (Hint: first consider an exponential growth function, see where you are 10 months later, and then reset the initial value and consider an exponential decay function.

50 (1.10) 7 (0.90) = 45.22 11 for 10 months 11 crease by for 10 decrease by

You'll only end up with \$45.22

- → b=1.035
- r = 0.035/year in 2000, what will a dozon 2020? (Assume that inflation is the only factor influencing price change.) What is the one-decade inflation rate?

=> A(+)= 2 (1.035)


$$A(20) = 2(1.035)^{20}$$

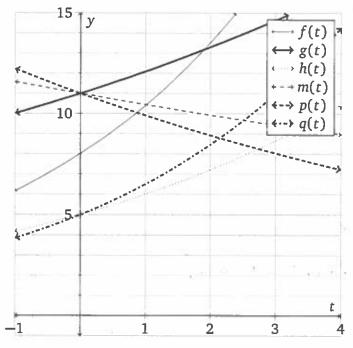
= 398

In 2020, a dozen eggs

Instructor: Alex Jordan will cost about \$3.99

So the one-tecale inflation roke is about 41%

2. Without using a graphing calculator, match each exponential function with its graph. Use what you can see in the formulas about growth factors and initial values.



(b)
$$5(1.2)^t = h(t)$$

(c)
$$8(1.3)^t = f(4)$$

(d)
$$11(0.9)^t = p(+)$$

(e)
$$11(0.95)^t = m(+)$$

3. Here are some exponential functions. Identify the initial value, the growth factor per unit t, and the relative growth rate per unit t. In the case of the relative growth rate, express it as a percentage.

a)
$$Q(t) = 50.3(1.183)^t$$

 $q = 50.3$ $b = 1.183$ $c = 18.3\%$

b)
$$g(x) = 0.0123(1.0004)^x$$

 $c = 19.3\%$
 $c = 0.0123 \quad b = 1.0004 \quad c = 0.04\%$

c)
$$h(t) = 22(0.813)^t$$

 $a = 22$ $b = 0.813$ $c = -18.7\%$

a = 22 b = 0.813
$$r = -18.7\%$$
 d) $M(t) = 1145 \left(\frac{3}{8}\right)^t$ a = 1145 b = $\frac{3}{8}$ $r = -\frac{5}{8} = -62.5\%$

4. The value V of an investment in year t is given by $V = 2500(1.0325)^t$. Describe this investment to a person on the street in everyday English. (What was the initial investment, and what yearly interest rate is the investment earning?)

The investment was initially \$2500, then grow by 3.25% per year.

When you drink a cup of coffee, you ingest about 100mg of caffeine. Every hour, approximately 16% of the caffeine is removed from your body through metabolic processes. Write a formula r=-0.16 for the amount of caffeine in your body t hours after you drink a cup. How much is left after 3 hours? About how long until there is only 10mg left in your body? (Use a calculator to help.) 6= 1+0 What is the one-day decay rate for caffeine in your body? A(24) = 100 (0,84) 78.0 =

$$A(3) = 100(0.84)^3 = 59.27...$$

Instructor: Alex Jordan about 59 mg of caffeine.