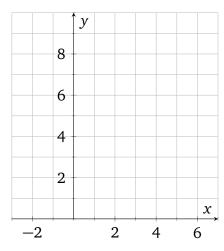

Piecewise-Defined Functions

In these exercises, we will practice plotting a piecewise-defined function. We will also practice reading the graph of a piecewise-defined function.


1. Graph the piecewise defined function by hand. If it helps, plot points first. Use arrows to indicate if a graph extends of the grid in some way. Us solid and hollow dots to indicate special behavior of the function where there is a transition from one rule to another rule.

$$f(x) = \begin{cases} x+4, & x \le -2\\ 2, & -2 < x < 2\\ 4-x, & x \ge 2 \end{cases}$$

What is the domain and range of f?

2. Graph the piecewise defined function by hand. If it helps, plot points first. Use arrows to indicate if a graph extends of the grid in some way. Us solid and hollow dots to indicate special behavior of the function where there is a transition from one rule to another rule.

$$f(x) = \begin{cases} \frac{1}{2}x^2 + 3, & -2 < x \le 0\\ \sqrt{x}, & 0 < x < 4\\ 4(x - 4) + 2, & x \ge 4 \end{cases}$$

What is the domain and range of f?

3. Consider the function f defined by $f(x) = \begin{cases} x+1, & x<1 \\ 3-x^2 & x \ge 1 \end{cases}$. What is the domain of this function and what is its range?

4. Use your calculator to graph $f(x) = \begin{cases} x+1, & x < 1 \\ 3-x^2 & x \ge 1 \end{cases}$.

TI-89: In the Y= menu, enter:

Y1 = when
$$(x < 1, x + 1,$$

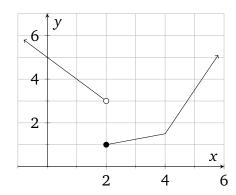
when $(x \ge 1, 3 - x^2,$
1/0))

You can either type "when" directly or use the CATALOG. Use the Math—Test menu to get the symbols < and \geq .

TI-83/84: In the Y= menu, enter:

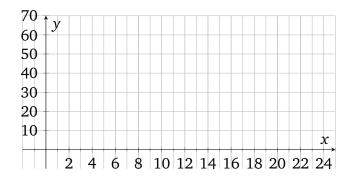
$$Y1 = (x+1)*(x < 1) + (3-x^2)*(x \ge 1)$$

Use the Math \longrightarrow Test menu to get the symbols < and \ge .


Casio 330: In the Y= screen, enter:

$$Y1 = \begin{cases} x+1, & x < 1\\ 3-x^2 & x \ge 1 \end{cases}$$

Use the 2D tab and the special button for piecewise-defined functions.


Go to the Graph screen, making sure that you are in a good Window.

5. Find a piecewise defined formula for the function with this graph.

6. A museum charges \$5 per person. However, larger groups get a discount. You may purchase a group ticket for \$40 that lets in up to 12 people. If your group has more than 12 people, each additional person costs \$2 more.

Let n be the number of people in a group that wants to enter the museum. Let C be the entrance cost for the entire group. The cost is a function of how many people are in the group: C = f(n) Plot f(n) for n = 1 up to n = 20, and give a piecewise defined formula for f(n).

