Supplemental Exercises for the Rates of Change Lab

Exercise 1.1

The function z shown in Figure E1.1 was generated by the formula $y=2+4x-x^2$.

- E1.1.1 Simplify the difference quotient for z.
- **E1.1.2** Use the graph to find the slope of the secant line to z between the points where x=-1 and x=2. Check your simplified difference quotient for z by using it to find the slope of the same secant line.
- **E1.1.3** Replace x with 4 in your difference quotient formula and simplify the result. Then copy Table E1.1 onto your paper and fill in the missing values.
- **E1.1.4** As the value of h gets closer to 0, the values in the y column of Table 1.1 appear to be converging on a single number; what is this number?
- E1.1.5 The value found in problem 1.1.4 is called the slope of the <u>tangent line</u> to z at 4. Draw onto Figure 1 the line that passes through the point (4,2) with this slope. The line you just drew is called <u>the tangent line</u> to z at 4.

Table E1.1: $y = \frac{z(4+h)-z(4)}{h}$		
	h	у
	-0.1	-3.9
	-0.01	-3.99
ì	-0.001	-3.999
	0.001	-4.001
	0.01	-4.01
	0.1	-4.01

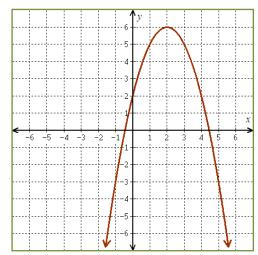


Figure E1.1: $y = 2 + 4x - x^2$

Exercise 1.2

Find the difference quotient for each function showing all relevant steps in an organized manner.

E1.2.1
$$f(x) = 3 - 7x$$

E1.2.2
$$g(x) = \frac{7}{x+4}$$

E1.2.3
$$z(x) = \pi$$

E1.2.4
$$s(t) = t^3 - t - 9$$

E1.2.5
$$k(t) = \frac{(t-8)^2}{t}$$

Exercise 1.3

Suppose that an object is tossed into the air in such a way that the elevation of the object (measured in ft) is given by the function $s(t) = 150 + 60t - 16t^2$ where t is the amount of time that has passed since the object was tossed (measure in seconds).

- E1.3.1 Find the difference quotient for s.
- E1.3.2 Use the difference quotient to determine the average velocity of the object over the interval $\begin{bmatrix} 4,4.2 \end{bmatrix}$ and then verify the value by calculating $\frac{s(4.2)-s(4)}{4.2-4}$.

Exercise 1.4

Several applied functions are given below. In each case, find the indicated quantity (including unit) and interpret the value in the context of the application.

- E1.4.1 The velocity of a roller coaster (in ft/s) is given by $v(t) = -100 \sin\left(\frac{\pi t}{15}\right)$ where t is the amount of time (s) that has passed since the coaster topped the first hill. Find and interpret $\frac{v(7.5) v(0)}{7.5s 0s}$.
- E1.4.2 The elevation of a ping pong ball relative to the table top (in m) is given by the function $h(t) = 1.1 \left| \cos \left(\frac{2 \pi t}{3} \right) \right| \text{ where } t \text{ is the amount of time (s) that has passed since the ball}$ went into play. Find and interpret $\frac{h(3) h(1.5)}{3 \, \text{s} 1.5 \, \text{s}}.$
- E1.4.3 The period of a pendulum (s) is given by $P(x) = \frac{6}{x+1}$ where x is the number of swings the pendulum has made. Find and interpret $\frac{P(29) P(1)}{29 \operatorname{swing} 1 \operatorname{swing}}$.
- E1.4.4 The acceleration of a rocket (mph/s) is given by h(t) = .02 + .13t where t is the amount of time (s) that has passed since lift-off. Find and interpret $\frac{h(120) h(60)}{120s 60s}$.