Implicit Differentiation

Activity 42

Some points that satisfy the equation $y^3 - 4y = x^2 - 1$ are graphed in Figure 42.1. Clearly this set of points does not constitute a function where y is a function of x; for example, there are three points that have an x-coordinate of 1.

each point on the curve and so long as the tangent line is not vertical it has a unique slope. We still identify the value of this slope using the symbol $\frac{dy}{dx}$, so it would be helpful if we had a

Never-the-less, there is a unique tangent line to the curve at

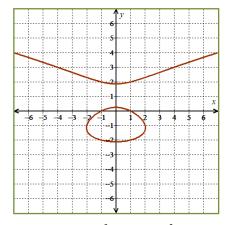


Figure 42.1: $y^3 - 4y = x^2 - 1$

formula for $\frac{dy}{dx}$. If we could solve $y^3 - 4y = x^2 - 1$ for y, finding the formula for $\frac{dy}{dx}$ would be a snap. Hopefully you quickly see that such an approach is just not possible.

To get around this problem we are going to employ a technique called <u>implicit differentiation</u>. We use this technique to find the formula for $\frac{dy}{dx}$ whenever the equation relating x and y is not explicitly solved for y. What we are going to do is treat y as if it were a function of x and set the derivatives of the two sides of the equation equal to one another. This is actually a reasonable thing to do because so long as we are at a point on the curve where the tangent line is not vertical, we could make y a function of x using appropriate restrictions on the domain and range.

Since we are treating y as a function of x, we need to make sure that we use the chain rule when differentiating terms like y^3 . When u is a function of x, we know that $\frac{d}{dx}(u^3) = 3u^2\frac{d}{dx}(u)$. Since the name we give $\frac{d}{dx}(y)$ is $\frac{dy}{dx}$, it follows that when y is a function of x, $\frac{d}{dx}(y^3) = 3y^2\frac{dy}{dx}$. The derivation of $\frac{dy}{dx}$ for the equation $y^3 - 4y = x^2 - 1$ is shown in example 42.1.

Example 42.1
$$y^3 - 4y = x^2 - 1$$

$$\frac{d}{dx}(y^3 - 4y) = \frac{d}{dx}(x^2 - 1)$$
Begin by differentiating both sides of the equation with respect to x .

The chain rule only comes into play on the terms involving y .
$$(3y^2 - 4)\frac{dy}{dx} = 2x$$

$$\frac{dy}{dx} = \frac{2x}{3y^2 - 4}$$
We now solve the equation for $\frac{dy}{dx}$.

At first it might be unsettling that the formula for $\frac{dy}{dx}$ contains both the variables x and y.

However, if you think it through you should conclude that the formula $\underline{\textit{must}}$ include the variable y; otherwise, how could the formula generate three different slopes at the points (1,2), (1,0), and (1,-2)? These slopes are given below. The reader should verify their values by drawing lines onto Figure 42.1 with the indicated slopes at the indicated points.

$$\frac{dy}{dx}\Big|_{(1,2)} = \frac{2(1)}{3(2)^2 - 4} \qquad \frac{dy}{dx}\Big|_{(1,0)} = \frac{2(1)}{3(0)^2 - 4} \qquad \frac{dy}{dx}\Big|_{(1,-2)} = \frac{2(1)}{3(-2)^2 - 4} \\
= \frac{1}{4} \qquad = -\frac{1}{2} \qquad = \frac{1}{4}$$

Problem 42.1

Use the process of implicit differentiation to find a formula for $\frac{dy}{dx}$ for the curves generated by each of the following equations. **Do not** simplify the equations before taking the derivatives.

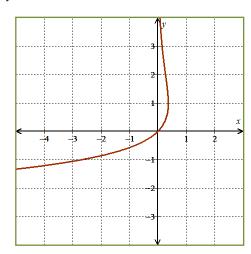
You will need to use the product rule for differentiation in problems 42.1.4-42.1.6.

42.1.1
$$3x^4 = -6y^5$$
 42.1.2 $\sin(x) = \sin(y)$
42.1.3 $4y^2 - 2y = 4x^2 - 2x$ **42.1.4** $x = ye^y$

42.1.5
$$y = xe^y$$
 42.1.6 $xy = e^{xy-1}$

Problem 42.2

Several points that satisfy the equation $y = xe^y$ are graphed in Figure 42.2. Find the slope and equation of the tangent line to this curve at the origin. (Please note that you already found the formula for $\frac{dy}{dx}$ in problem 42.1.5.)



Problem 42.3

Consider the set of points that satisfy the equation $\ x\ y=4$.

Figure 42.2: $y = xe^y$

- 42.3.1 Use implicit differentiation to find a formula for $\frac{dy}{dx}$.
- **42.3.2** Find a formula for $\frac{dy}{dx}$ after first solving the equation xy = 4 for y.
- 42.3.3 Show that the two formulas are in fact equivalent so long as xy=4.

Problem 42.4

A set of points that satisfy the equation $x\cos(xy) = 4 - y$ is graphed in Figure 42.3. Find the slope and equation of the tangent line to this curve at the point (0,4).

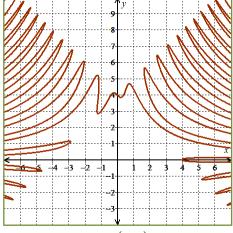


Figure 42.3: $x \cos(x y) = 4 - y$

Activity 43

Using the definition $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$, it is easy to establish that $\frac{d}{dx}(x^2) = 2x$. We can use this formula and implicit differentiation to find the formula for $\frac{d}{dx}(\sqrt{x})$.

If $y = \sqrt{x}$, then $y^2 = x$ (and $y \ge 0$). Using implicit differentiation we have:

$$y^{2} = x$$

$$\frac{d}{dx}(y^{2}) = \frac{d}{dx}(x)$$

$$2y\frac{dy}{dx} = 1$$

$$\frac{dy}{dx} = \frac{1}{2y}$$

But $y = \sqrt{x}$, so we have:

$$\frac{dy}{dx} = \frac{1}{2y}$$
$$= \frac{1}{2\sqrt{x}}$$

In a similar manner, we can use the fact that $\frac{d}{dx}(\sin(x)) = \cos(x)$ to come up with a formula for $\frac{d}{dx}(\sin^{-1}(x))$.

If
$$y = \sin^{-1}(x)$$
, then $\sin(y) = x$ and $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$. This gives us:

$$\sin(y) = x$$

$$\frac{d}{dx}(\sin(y)) = \frac{d}{dx}(x)$$

$$\cos(y)\frac{dy}{dx} = 1$$

$$\frac{dy}{dx} = \frac{1}{\cos(y)}$$

$$\frac{dy}{dx} = \frac{1}{\sqrt{1-\sin^2(y)}}$$
This expression comes from the trigonometric identity
$$\sin^2(t) + \cos^2(t) = 1. \text{ If you solve that equation for } \cos(t) \text{ you get } \cos(t) = \pm \sqrt{1-\sin^2(t)} \text{ . Because the function } y = \sin^{-1}(x) \text{ never has negative slope we can discard the negative solution to the equation.}$$

$$\frac{dy}{dx} = \frac{1}{\sqrt{1-x^2}}$$
Here we use that fact that $\sin(y) = x$.

Problem 43.1

Use the fact that $\frac{d}{dx}(e^x) = e^x$ together with implicit differentiation to show that $\frac{d}{dx}(\ln(x)) = \frac{1}{x}$.

Begin by using the fact that $y = \ln(x)$ implies that $e^y = x$ (and y > 0). Your first step is to differentiate both sides of the equation $e^y = x$ with respect to x.

Problem 43.2

Use the fact that $\frac{d}{dx}(\ln(x)) = \frac{1}{x}$ together with implicit differentiation to show that $\frac{d}{dx}(e^x) = e^x$.

Begin by using the fact that $y=e^x$ implies that $\ln \big(y\big)=x$. Your first step is to differentiate both sides of the equation $\ln \big(y\big)=x$ with respect to x.

Problem 43.3

Use the fact that $\frac{d}{dx}(\tan(x)) = \sec^2(x)$ together with implicit differentiation to show that $\frac{d}{dx}(\tan^{-1}(x)) = \frac{1}{1+x^2}$. Begin by using the fact that $y = \tan^{-1}(x)$ implies that $\tan(y) = x$ (and $-\frac{\pi}{2} < y < \frac{\pi}{2}$). Your first step is to differentiate both sides of the equation $\tan(y) = x$ with respect to x. Please note that you will need to use the Pythagorean identity that relates the tangent and secant functions while working this problem.