SUPPLEMENTAL PACKET FOR MTH 111

SUPPLEMENTAL PROBLEMS FOR §1.3

DEFINITION: A function is **concave up** if its graph bends upward. The rate of change of

a concave up function increases as we move from left to right along the

curve.

A function is **concave down** if its graph bends downward. The rate of change of a concave down function decreases as we move from left to right

along the curve.

NOTE: A function with a *constant rate of change* is a linear function and is neither

concave up nor concave down.

EXAMPLE 1: In Figures 1-4, the graphs of four functions are given. Determine which graphs are concave up and which graphs are concave down.

Solution: The graphs in Figures 1 and 3 are concave up.

The graphs in Figures 2 and 4 are concave down.

EXAMPLE 2a: A parabola that opens up is concave up. For example, the parabola graphed in Figure 5 is concave up.

Figure 5

EXAMPLE 2b: A parabola that opens down is concave down. For example, the parabola graphed in Figure 6 is concave down.

EXAMPLE 3: Determine the interval(s) on which the functions graphed below are concave up or concave down.

a.

b.

Figure 8: y = g(x)

Solution: a. f is concave up on the interval $(0, \infty)$ and concave down on the interval $(-\infty, 0)$.

> **b.** g is concave up on the interval $(-\infty, -2)$ and concave down on the interval $(-2, \infty)$.

EXERCISES:

1. Determine the interval(s) on which the functions graphed below are concave up or concave down.

a.

Figure 9: y = r(x)

b.

Figure 10: y = s(x)

C.

Figure 11: y = t(x)

d.

Figure 12: y = w(x)

SUPPLEMENTAL PROBLEMS FOR §1.5

EXAMPLE 1: The table below defines the functions f, g, and h. Express g(x) and h(x) in terms of f.

х	-3	-2	-1	0	1	2	3
f(x)	8	6	4	2	0	-1	-2
g(x)	-8	-6	-4	-2	0	1	2
h(x)	5	3	1	-1	-3	-4	-5

Solution: g(x) = -f(x) and h(x) = f(x) - 3.

EXAMPLE 2: a. If $f(x) = x^2$ and $g(x) = 2x^2 + 5$, express g(x) in terms of f.

b. If $f(x) = x^2$ and $h(x) = (x + 5)^2 - 3$, express h(x) in terms of f.

Solution: a. g(x) = 2f(x) + 5.

b. h(x) = f(x+5) - 3.

EXERCISES:

1. The table below defines the functions f, g, h, k, and l.

х	-2	-1	0	1	2
f(x)	0	1	2	3	4
g(x)	4	3	2	1	0
h(x)	0	-1	-2	-3	-4
k(x)	6	7	8	9	10
l(x)	0	3	6	9	12

- **a.** Express g(x) in terms of f and describe how the graph of y = f(x) can be transformed into the graph of y = g(x).
- **b.** Express h(x) in terms of f and describe how the graph of y = f(x) can be transformed into the graph of y = h(x).

- **c.** Express k(x) in terms of f and describe how the graph of y = f(x) can be transformed into the graph of y = k(x).
- **d.** Express l(x) in terms of f and describe how the graph of y = f(x) can be transformed into the graph of y = l(x).
- **2.** The second row in the table below givens values for the function f. Complete the rest of the table. (If you don't have sufficient information to fill-in some of the cells, leave those cells blank.)

x	-4	-3	-2	-1	0	1	2	3	4
f(x)	-2	-1	0	1	2	3	4	5	6
$\frac{1}{2}f(x)$									
-2f(x)									
f(x) + 5									
f(x+2)									
$f\left(\frac{1}{2}x\right)$									
f(2x)									
f(x-3)									

In **3 – 6**, first write g(x) in terms of f and then compose a sequence of transformations that will transform the graph of y = f(x) into the graph of y = g(x).

3.
$$f(x) = \sqrt{x}$$
$$g(x) = \frac{\sqrt{x-7}}{4}$$

4.
$$f(x) = \frac{1}{x}$$
 $g(x) = \frac{2}{x} + 3$

5.
$$f(x) = x^2$$

 $g(x) = -4\left(\frac{1}{2}x - 5\right)^2 + 3$

6.
$$f(x) = \sqrt[3]{x}$$

 $g(x) = \frac{1}{2} \cdot \sqrt[3]{10x + 30} - 6$

In **7 – 10**, the graph of y = f(x) is provided; on the same coordinate plane, sketch a graph of the given function.

7. $k_1(x) = f(2x)$

Figure 13: y = f(x)

8. $k_2(x) = 2f(-2x) -$

Figure 14: y = f(x)

9. $k_3(x) = -2f(2x+4)$

Figure 15: y = f(x)

10. $k_4(x) = f(\frac{1}{2}x) + 2$

Figure 16: y = f(x)

SUPPLEMENTAL PROBLEMS FOR §4.2

EXERCISES:

1. The table below defines the function m. Is m an invertible function? Why or why not? If your answer is "yes", construct a table-of-values for m^{-1} .

х	1	2	3	4	5
m(x)	0	5	10	15	20

2. The table below defines the function p. Is p an invertible function? Why or why not? If your answer to part (a) is "yes", construct a table-of-values for p^{-1} .

х	1	2	3	4	5
p(x)	4	0	-2	0	2

SUPPLEMENTAL PROBLEMS FOR §4.3

EXERCISES:

1. Find an algebraic rule for an exponential function f that passes through the given two points.

a.
$$(0, 50)$$
 and $(3, 400)$

b.
$$(0, 4)$$
 and $(4, \frac{1}{4})$

c.
$$\left(-1, \frac{2}{3}\right)$$
 and $\left(2, 18\right)$

d.
$$\left(-2, \frac{125}{8}\right)$$
 and $\left(1, 8\right)$

e.
$$(-2, 125)$$
 and $(3, \frac{1}{25})$

f.
$$\left(-3, \frac{27}{16}\right)$$
 and $\left(3, \frac{4}{27}\right)$

- **2.** A population increases at a constant rate of 1.3% per year. Find the approximate value for the following:
 - **a.** 1-year factor of growth and 1-year rate of growth.
 - **b.** 5-year factor of growth and 5-year rate of growth.
 - **c.** 1-month factor of growth and 1-month rate of growth.

- **3.** A population decreases at a rate of 13.2% per 5 years. Find the approximate value for the following:
 - **a.** 1-year factor of decay and 1-year rate of decay.
 - **b.** 5-year factor of decay and 5-year rate of decay.
 - **c.** 10-year factor of decay and 10-year rate of decay.

SUPPLEMENTAL PROBLEMS FOR §4.4

EXAMPLE: The graph of $f(x) = \log_a(x)$ is given in Figure 17. Find a. (Note that the points (1, 0) and (9, 2) are on the graph of f.)

Figure 17: $f(x) = \log_a(x)$

Solution:

Since the function has form $f(x) = \log_a(x)$ and since the point (9, 2) is on the graph, we know that f(9) = 2. Thus,

$$f(9) = 2$$

$$\Rightarrow \log_a(9) = 2 \quad \text{(since } f(9) = \log_a(9)\text{)}$$

$$\Rightarrow \qquad a^2 = 9 \quad \text{(translate the logarithmic statement into an exponential one)}$$

$$\Rightarrow \qquad a = 3 \quad \text{(take the positive square root of 9 because bases of logs are positive)}$$

Notice that we didn't attempt to use (1,0), the other obvious point on the graph of $f(x) = \log_a(x)$, to find a. Why not? (The point (1,0) is on the graph of *all* functions of the form $f(x) = \log_a(x)$ so it doesn't provide information that will help us find the particular function graphed here.)

EXERCISES:

1. The graph of $f(x) = \log_a(x)$ is given in Figure 18. Find a. (Note that the points (1, 0) and (25, 4) are on the graph of f.)

Figure 18: $f(x) = \log_a(x)$

In **2** and **3**, table-of-values for the function $f(x) = \log_a(x)$ are given. Find a.

2.	X	0.000125	0.05	1	$2\sqrt{5}$	400
	f(x)	-3	-1	0	0.5	2

3.	x	$\frac{1}{9}$	1	3	81	243
	f(x)	-4	0	2	8	10

ANSWERS TO THE SUPPLEMENTAL PROBLEMS FOR §1.3:

- **1. a.** r is concave up on the interval (-4, 0), and it is concave down on the intervals (-8, -4) and (0, 4).
 - **b.** s is concave up on the interval (-2, 0.5) and it is concave down on the intervals $(-\infty, -2)$ and $(0.5, \infty)$.
 - **c.** *t* is never concave up and it is never concave down.
 - **d.** w is concave up on the interval $(-\infty, 1)$ and it is concave down on the interval $(1, \infty)$.

ANSWERS TO THE SUPPLEMENTAL PROBLEMS FOR §1.5:

- **1. a.** g(x) = f(-x). So we can reflect the graph of y = f(x) about the y-axis to obtain y = g(x).
 - **b.** h(x) = -f(x). So we can reflect the graph of y = f(x) about the *x*-axis to obtain y = h(x).
 - **c.** k(x) = f(x) + 6. So we can shift the graph of y = f(x) up 6 units to obtain y = k(x).
 - **d.** l(x) = 3f(x). So we can stretch the graph of y = f(x) vertically by a factor of 3 to obtain y = l(x).

ı	1								ı	
2.	х	-4	-3	-2	-1	0	1	2	3	4
	f(x)	-2	-1	0	1	2	3	4	5	6
	$\frac{1}{2}f(x)$	-1	$-\frac{1}{2}$	0	1/2	1	3/2	2	5/2	3
	-2f(x)	4	2	0	-2	-4	-6	-8	-10	-12
	f(x) + 5	3	4	5	6	7	8	9	10	11
	f(x+2)	0	1	2	3	4	5	6		
	$f\left(\frac{1}{2}x\right)$	0		1		2		3		4
	f(2x)			-2	0	2	4	6		
	f(x-3)				-2	-1	0	1	2	3

3.
$$g(x) = \frac{\sqrt{x-7}}{4}$$
 So we can transform $y = f(x)$ into $y = g(x)$ by... $= \frac{1}{4}\sqrt{x-7}$ 1st: shifting right 7 units 2^{nd} : compressing vertically by a factor of $\frac{1}{4}$ (there are other correct answers)

4.
$$g(x) = \frac{2}{x} + 3$$
 So we can transform $y = f(x)$ into $y = g(x)$ by... $= 2 \cdot \frac{1}{x} + 3$ $= 2 f(x) + 3$ So we can transform $y = f(x)$ into $y = g(x)$ by... 1^{st} : stretching vertically by a factor of 2 2^{nd} : shifting up 3 units (there are other correct answers)

5.
$$g(x) = -4\left(\frac{1}{2}x - 5\right)^2 + 3$$
 So we can transform $y = f(x)$ into $y = g(x)$ by...

$$= -4f\left(\frac{1}{2}x - 5\right) + 3$$

$$= -4f\left(\frac{1}{2}(x - 10)\right) + 3$$
So we can transform $y = f(x)$ into $y = g(x)$ by...

$$1^{st}$$
: stretching horizontally by a factor of 2

$$2^{nd}$$
: stretching vertically by a factor of 4 and reflecting about the x -axis

$$4^{th}$$
: shifting up 3 units

(there are other correct answers)

6.
$$g(x) = \frac{1}{2}\sqrt[3]{10x + 30} - 6$$
 So we can transform $y = f(x)$ into $y = g(x)$ by... $= \frac{1}{2}f\left(10x + 30\right) - 6$ 2^{nd} : shifting left 3 units $= \frac{1}{2}f\left(10(x + 3)\right) - 6$ 3^{rd} : compressing vertically by a factor of $\frac{1}{2}$ 4^{th} : shifting down 6 units (there are other correct answers)

9.

Figure 21: $k_3(x) = -2 f(2x+4)$

10.

Figure 22: $k_4(x) = f(\frac{1}{2}x) + 2$

ANSWERS TO THE SUPPLEMENTAL PROBLEMS FOR §4.2

1. m is an invertible function since it is one-to-one, i.e., each output corresponds to exactly one input. Below is a table-of-values for m^{-1} .

х	0	5	10	15	20
$m^{-1}(x)$	1	2	3	4	5

2. p isn't an invertible function since it isn't one-to-one. Notice how the output 0 corresponds to TWO distinct input values.

ANSWERS TO THE SUPPLEMENTAL PROBLEMS FOR §4.3:

1. a.
$$f(x) = 50 \cdot 2^x$$

b.
$$f(x) = 4 \cdot \left(\frac{1}{2}\right)^x$$

c.
$$f(x) = 2 \cdot 3^x$$

d.
$$f(x) = 10 \cdot \left(\frac{4}{5}\right)^x$$

e.
$$f(x) = 5 \cdot \left(\frac{1}{5}\right)^x$$

f.
$$f(x) = \frac{1}{2} \cdot \left(\frac{2}{3}\right)^x$$

- **2. a.** The 1-year factor of growth is 1.013 and the 1-year rate of growth is 1.3% per year.
 - **b.** The 5-year factor of growth is $(1.013)^5 \approx 1.0667$ and the 5-year rate of growth is about 6.67% per 5 years.
 - **c.** The 1-month factor of growth is $(1.013)^{1/12} \approx 1.00108$ and the 1-month rate of growth is about 0.108% per month.
- **3. a.** The 1-year factor of decay is $(0.868)^{1/5} \approx 0.972$ and the 1-year rate of decay is about 2.8% per year (since 0.972 = 1 + (-0.028)).
 - **b.** The 5-year factor of decay is 0.868 and the 5-year rate of decay is 13.2% per 5 years.
 - **c.** The 10-year factor of decay is $(0.868)^2 \approx 0.7534$ and the 10-year rate of decay is about 24.66% per 10 years.

ANSWERS TO THE SUPPLEMENTAL PROBLEMS FOR §4.4:

1.
$$a = \sqrt{5}$$

2.
$$a = 20$$

3.
$$a = \sqrt{3}$$